4. (10 points) Give the definition of the improper integral $\int_{1}^{\infty} \frac{1}{x^{3/2}} dx$. Then use your definition to evaluate the integral if it converges, or else show it diverges. **5.** (12 points). Evaluate the integrals, given that f(x) is a continuous function for $0 \le x \le 6$ with the following properties: $$f(0) = 2$$, $f(2) = 3$, $f(4) = -1$, $f(6) = 5$; $f'(0) = 1$, $f'(2) = 4$; $$\int_0^2 f(x) dx = 3$$, $\int_2^4 f(x) dx = 1$, $\int_4^6 f(x) dx = 6$. (a) $$\int_0^2 x f'(x) dx =$$ ______. **(b)** $$\int_2^4 f'(x) (2 + 3f(x)) dx = \underline{\qquad}$$ (c) $$\int_0^2 f(3x) dx =$$ ______.