- 8. (14 points) A team of biologists seeking to develop alternate solutions to the use of pesticides proposes the following experiment. A plant infested by a large colony of aphids (small insects), is placed in a container originally saturated in dioxygen (O_2) . They hope that the parasites can be suffocated by the CO_2 produced by their natural activities (e.g. breathing) and those of the plant (e.g. photosynthesis). Make the simplifying assumptions, which are approximations, that: - (i) The container is sealed; no molecules enter or leave. - (ii) The sum of the volumes of O₂ and CO₂ in the container is constant and equal to 117 deciliters (dL); i.e. 11.7 liters. - (iii) At the start of the experiment (t = 0), there is no CO_2 in the container. The light in the room is adjusted so as to mimick a "perfect" 24-hour period. The parasites produce CO_2 at a constant rate of 7.5 dL per hour. When the light is turned on, the plant absorbs CO_2 and releases O_2 . When the light is turned off, it does the opposite; i.e. uses O_2 and produces CO_2 . The rates of release in the container of CO_2 (in dL per hour) for the parasites, a(t), and the plant, p(t), are plotted below. Note that negative rates correspond to absorption. (a) By approximately how much does the volume V(t) of CO_2 in the container change in the small time interval between t and $t + \Delta t$? Express your answer in terms of Δt , and of the rates p(t) and a(t). | (b) | Write | an inte | gral th | at give | es the v | volume | V(12) | of C | O_2 in the | conta | $_{ m iner}$ | after | 12 hours. | Exp | lain | |------|--------|---------|---------|---------|----------|--------|-------|--------|--------------|-------|--------------|----------------------|-----------|------|------| | why | your | integra | l gives | the v | alue of | V(12). | You | will p | probably | want | to u | ${ m se} { m the}$ | answer | from | (a) | | in y | our ex | planati | on. | | | | | | | | | | | | | (c) What is the value of V(12)? Explain how you obtained your answer. ANSWER: $$V(12) =$$ (d) When the container becomes saturated in CO_2 , i.e. no O_2 remains, the parasites suffocate to death, and the experiment is stopped. Decide whether that will happen within the 24-hour period; and, if you think it will, estimate this time.