5. (11 points) A child is sitting on a Ferris wheel. If the origin is at the center of the circle and we measure \(x \) and \(y \) in meters, her motion is given by the following parametric equations:
\[
 x = 125 \sin((2\pi/9)t), \quad y = -125 \cos((2\pi/9)t),
\]
where we measure \(t \) in minutes since she boarded the ride.

(a) (2 pts.) What is the diameter of the Ferris wheel?

\[
 D = 250 \text{ meters}
\]

(b) (2 pts.) How long does it take for the Ferris wheel to make one complete revolution?

9 minutes

(c) (3 pts.) Find the speed of the child 10 minutes into the ride.

\[
 \frac{dx}{dt} = \frac{2\pi}{9} 125 \cos \left(\frac{2\pi}{9} t \right), \quad \frac{dy}{dt} = \frac{2\pi}{9} 125 \sin \left(\frac{2\pi}{9} t \right)
\]

\[
 S = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{\left(\frac{2\pi}{9} 125 \right)^2} \simeq 87.26 \text{ meters/minute}
\]

(d) (4 pts.) If at 10 minutes into the ride the child were to suddenly step off of the Ferris wheel, her motion would initially be along the tangent line at \(t = 10 \). Determine parametric equations for this tangent line.

We have,

\[
 x(10) = 125 \sin \left(\frac{2\pi}{9} 10 \right) \simeq 80
\]

\[
 y(10) = -125 \cos \left(\frac{2\pi}{9} 10 \right) \simeq -95.
\]

Also,

\[
 \frac{dx}{dt} \bigg|_{t=10} = \frac{2\pi}{9} 125 \cos \left(\frac{2\pi}{9} 10 \right) \simeq 67
\]

\[
 \frac{dy}{dt} \bigg|_{t=10} = \frac{2\pi}{9} 125 \sin \left(\frac{2\pi}{9} 10 \right) \simeq 56.
\]

So,

\[
 x(t) = 67t + 80
\]

\[
 y(t) = 56t - 95.
\]