University of Michigan Department of Mathematics

Fall, 2005 Math 116 Exam 1 Problem 6 Solution

- 6. (13 points) Let a and b be positive numbers. The region bounded by the positive y-axis, the positive x-axis, the vertical line x = b and the curve $y = e^{-ax}$ is revolved about the x-axis.
 - (a) (6 pts.) Find the volume of the resulting solid. (Yes, your answer will involve a and b.)

Have,

Volume of a slice
$$(V_{slice}) \simeq \pi r^2 \Delta x$$
, where $r = e^{-ax}$.

Therefore,

$$V_{\text{slice}} \simeq \pi (e^{-ax})^2 \Delta x = \pi e^{-2ax} \Delta x.$$

and so

Total Volume =
$$\int_{0}^{b} \pi e^{-2ax} dx = \frac{\pi e^{-2ax}}{-2a} \Big|_{0}^{b}$$

= $\frac{\pi e^{-2ab}}{-2a} - \frac{\pi}{-2a}$
= $\frac{\pi}{2a} (1 - e^{-2ab}).$

(b) (7 pts.) Suppose we let $b \to \infty$, creating a solid with an infinitely long neck. Does this solid have finite volume? If so, find it (showing step-by-step work.) If not, explain why not.

$$V = \lim_{b \to \infty} \frac{\pi}{2a} (1 - e^{-2ab}) = \frac{\pi}{2a} ,$$

since
$$e^{-2ab} \to 0$$
 as $b \to \infty$, (because $a > 0$)

So,

$$V = \frac{\pi}{2a}$$
 is finite.