- 7. (3 points each) Multiple choice. Circle *the single* correct answer to each one of the following questions. (No partial credit will be awarded.)
 - (I) Suppose that f and g are positive, continuous functions on the interval $x \ge 1$ such that $f(x) \ge g(x)$ for $1 \le x < 4$ and $f(x) \le g(x)$ for $x \ge 4$. If $\int_4^{\infty} g(x) dx$ converges to the value A, then what can you say about $\int_1^{\infty} f(x) dx$?
 - (a) It may diverge or converge; it cannot be determined.
 - (b) It converges to a number that must be greater than A.
 - (c) It converges to a number that must be less than A.

(d) It converges to a number that may be greater than A or may be less than A.

- (II) Suppose that $\int_3^\infty \frac{100}{x^p} dx$ diverges for some $p \neq 1$. What can you conclude about $\int_0^3 \frac{100}{x^p} dx$? (a) It also diverges.
 - (b) It converges.
 - (c) It may diverge or converge; it cannot be determined.
 - (d) It is not an improper integral, so we don't talk about its convergence or divergence.
- (III) Which of the following is true about $\int_{2}^{\infty} \frac{1}{\sqrt{\theta} + \theta^2} d\theta$?
 - (a) It converges, by comparison with $\int_2^\infty 1/\theta^2 \ d\theta$.
 - (b) It diverges, by comparison with $\int_2^\infty 1/\sqrt{\theta} \ d\theta$.
 - (c) It diverges, by comparison with $\int_2^\infty 1/\theta^2 \ d\theta$.
 - (d) It converges, by comparison with $\int_2^\infty 1/\sqrt{\theta} \ d\theta$.
- (IV) Suppose that $\int_1^{\infty} A(t) dt$ converges, and A(t) is a positive, continuous function for all real numbers. Then, what can you say about the convergence or divergence of

$$\int_{1}^{\infty} (A(t) + A(t)) dt \text{ and } \int_{1}^{\infty} \left(A(t) + \frac{1}{t} \right) dt?$$

(a) $\int_{1}^{\infty} (A(t) + A(t)) dt$ converges, but $\int_{1}^{\infty} (A(t) - \frac{1}{t}) dt$ diverges.

- (b) $\int_1^\infty (A(t) + A(t)) dt$ diverges, but $\int_1^\infty (A(t) + 1/t) dt$ converges.
- (c) They both diverge.
- (d) They both converge.