(a) The integral \(\int \arcsin(x) \, dx \) can be integrated by parts.

\[\text{True} \quad \text{False} \]

(b) The graph of the equation \(r = \theta \) is a straight line.

\[\text{True} \quad \text{False} \]

(c) The integral

\[\int_0^{\pi/2} \frac{1}{2} (5 \sin 2\theta^2) \, d\theta, \]

represents the area enclosed by one petal of the rose curve \(r = 5 \sin 2\theta \).

\[\text{True} \quad \text{False} \]

(d) The area of a circular oil spill grows at a rate of \(r(t) \) square miles per hour, where \(t \) is measured in hours. Then \(\int_0^3 r(t) \, dt \) gives the total change (in miles) in the radius of the spill during the first three hours after it occurred.

\[\text{True} \quad \text{False} \]

(e) The integral \(\int_0^r \pi (r^2 - y^2) \, dy \) represents the total volume of a sphere of radius \(r \).

\[\text{True} \quad \text{False} \]