2. [12 points] While working on their team homework, Alex and Chris find that they have evaluated the same integral-but that they each used a different method, and got different answers! Alex found

$$
\int(2 x-1)(3+x)^{4} d x=(2 x-1)\left(\frac{1}{5}(3+x)^{5}\right)-\frac{1}{15}(3+x)^{6}+C
$$

while Chris had

$$
\int(2 x-1)(3+x)^{4} d x=\frac{1}{3}(3+x)^{6}-\frac{7}{5}(3+x)^{5}+C,
$$

(a) [6 of 12 points] Considering the form of the solution that Alex found, what method is it most likely that Alex used? Use this method and verify that you obtain the same solution.

Solution:

We notice that the first term of Chris' solution, $(2 x-1)\left(\frac{1}{5}(3+x)^{5}\right)$, is the product $u v$ if $u=2 x-1$ and $v^{\prime}=(3+x)^{4}$, so it looks as if this solution was obtained by using integration by parts. With these choices of u and v^{\prime}, we have $u^{\prime}=2$ and $v=\frac{1}{5}(3+x)^{5}$, so

$$
\begin{aligned}
\int(2 x-1)(3+x)^{4} d x & =(2 x-1)\left(\frac{1}{5}(3+x)^{5}\right)-\int \frac{2}{5}(3+x)^{5} d x \\
& =(2 x-1)\left(\frac{1}{5}(3+x)^{5}\right)-\frac{1}{15}(3+x)^{6}+C
\end{aligned}
$$

(b) [6 of 12 points] Considering the form of the solution that Chris found, what method is it most likely that Chris used? Use this method and verify that you obtain the same solution.

Solution:
We see only factors of $3+x$ to various powers in the solution, which suggests that Alex may have used substitution with $w=3+x$. This works because then $d w=d x$ and $2 x-1=2 w-7$, so that

$$
\begin{aligned}
\int(2 x-1)(3+x)^{4} d x & =\int(2 w-7) w^{4} d w=\int 2 w^{5}-7 w^{4} d w \\
& =\frac{2}{6} w^{6}-\frac{7}{5} w^{5}+C=\frac{1}{3}(3+x)^{6}-\frac{7}{5}(3+x)^{5}+C
\end{aligned}
$$

