4. [8 points] Use the fact that $\int_{0}^{\infty} e^{-x} \sin (x) d x=\frac{1}{2}$ to find $\int_{0}^{\infty} e^{-x} \cos (x) d x$.

Solution:
We use integration by parts on $\int_{0}^{\infty} e^{-x} \cos (x) d x$ with $u=e^{-x}$, so that $u^{\prime}=-e^{-x}$ and $v^{\prime}=\cos (x)$, so that $v=\sin (x)$. Then

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} \cos (x) d x & =\lim _{b \rightarrow \infty}\left(\left.e^{-x} \sin (x)\right|_{0} ^{b}+\int_{0}^{b} e^{-x} \sin (x) d x\right) \\
& =\lim _{b \rightarrow \infty}\left(e^{-b} \sin (b)\right)+\int_{0}^{\infty} e^{-x} \sin (x) d x \\
& =0+\frac{1}{2}
\end{aligned}
$$

Thus $\int_{0}^{\infty} e^{-x} \cos (x) d x=\frac{1}{2}$.
Alternate solution: with $u=\sin (x)$ and $v^{\prime}=e^{-x}$, we have $u^{\prime}=\cos (x)$ and $v=-e^{-x}$, so that $\int_{0}^{\infty} e^{-x} \sin (x) d x=\lim _{b \rightarrow \infty}\left(-\cos (b) e^{-b}+1\right)-\int_{0}^{\infty} e^{-x} \sin (x) d x=1-\frac{1}{2}=\frac{1}{2}$.
Second alternate solution: Use integration by parts twice to solve for answer without using the given $\int_{0}^{\infty} e^{-x} \sin (x) d x=\frac{1}{2}$. Note that this doesn't completely follow the instructions, and therefore cannot receive full credit.
5. [8 points] Let $F(x)=\int_{0}^{x^{2}(x-1)} g(t) d t$, where $g(t)$ is always positive. For what values of x is $F(x)$ increasing? For what values is it decreasing?

Solution:

$F(x)$ is increasing when $F^{\prime}(x)>0$ and decreasing when $F^{\prime}(x)<0$. Taking the derivative, $F^{\prime}(x)=$ $\frac{d}{d x} \int_{0}^{x^{2}(x-1)} g(t) d t=\left(2 x(x-1)+x^{2}\right) \cdot g\left(x^{2}(x-1)\right)$. Because g is always positive, the sign of this expression is determined by the first term, $2 x(x-1)+x^{2}=3 x^{2}-2 x$. We can see when this is positive and negative by graphing it, or by factoring. Factoring, $3 x^{2}-2 x=x(3 x-2)$, which is negative for $0<x<\frac{2}{3}$, and positive for $x<0$ and $x>\frac{2}{3}$. Thus $F(x)$ is increasing for $x<0$ and $x>\frac{2}{3}$, and decreasing for $0<x<\frac{2}{3}$.

