- 9. [10 points] To improve their understanding of the material in their Calculus course, Alex and Chris have invented a set of statements about the material they have been studying. These statements are given below. For each statement, circle **true** (that is, the statement is always true), or **false** (it isn't), and give a one sentence explanation for your answer.
 - (a) [2 of 10 points] If a bounded continuous function f(x) has the properties that $f(x) > \frac{1}{x}$ for 1 < x < 50, $f(50) = \frac{1}{50}$, and $f(x) < \frac{1}{x}$ for x > 50, then $\int_{1}^{\infty} f(x) dx$ converges.

TRUE FALSE

Solution:

False. The behavior of f(x) for $x \leq 50$ doesn't matter for the convergence of $\int_1^\infty f(x) \, dx$, but because $\int_1^\infty \frac{1}{x} \, dx$ diverges, $f(x) < \frac{1}{x}$ for x > 50 only tells us that the area under f(x) is guaranteed to be "less infinite" than that under $\frac{1}{x}$.

(b) [2 of 10 points] If a bounded continuous function f(x) has the properties that $f(x) > \frac{1}{x^2}$ for 1 < x < 50, $f(50) = \frac{1}{2500}$, and $f(x) < \frac{1}{x^2}$ for x > 50, then $\int_1^\infty f(x) \, dx$ converges.

TRUE FALSE

Solution:

True. Using the same logic as in (a), we know that the area under f(x) is less than the area under $\frac{1}{x^2}$; thus, because $\int_1^{\infty} \frac{1}{x^2} dx$ converges, so too must $\int_1^{\infty} f(x) dx$. As a side note, this argument assumes that $f(x) \geq 0$, which should have been included in the conditions on f(x) given in the problem.

(c) [2 of 10 points] Since the function $\frac{\sin(x)+2}{\sqrt{x}}$ is always less than $\frac{3}{\sqrt{x}}$ for $2 \le x < \infty$ and $\lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$, we know that $\int_2^\infty \frac{\sin(x)+2}{\sqrt{x}} dx$ converges.

TRUE FALSE

Solution:

False. Again, while $\lim_{x\to\infty} \frac{1}{\sqrt{x}} = 0$, $\int_2^\infty \frac{2}{\sqrt{x}} dx$ diverges, so we know only that $\int_2^\infty \frac{\sin(x)+1}{\sqrt{x}} dx$ is smaller than that infinite value, which provides no guarantee that it converges.

(d) [2 of 10 points] If $0 < \frac{1}{x} < g(x) < \frac{1}{x^2}$ for 0 < x < 1, then the area between g(x) and the x-axis for 0 < x < 1 is guaranteed to be finite.

TRUE FALSE

Solution:

False. We know that both $\int_0^1 \frac{1}{x} dx$ and $\int_0^1 \frac{1}{x^2} dx$ diverge, so the integral of g(x) must also diverge, and the area is correspondingly infinite.

(e) [2 of 10 points] Let $f(x) = \frac{1}{(x-1)^2}$. Then if $F(x) = \int_0^x f(t) dt$, we know that F(0) = 0 and that $F(2) = \int_0^2 \frac{1}{(t-1)^2} dt = -\frac{1}{t-1} \Big|_0^2 = -1 - 1 = -2$.

TRUE FALSE

Solution:

False. Because $\frac{1}{(x-1)^2}$ is undefined at x=1, we need to evaluate F(2) as an improper integral, which because the integrand looks like $(x-1)^{-2}$ near x=1 will diverge.