1. [16 points] For this problem, $\int_{1}^{5} g(x) d x=12$, and $f(x)=2 x-9$. Values of $g(x)$ are given in the table below.

$$
\begin{array}{r|c|c|c|c|c}
x & 1 & 2 & 3 & 4 & 5 \\
\hline g(x) & 0.1 & 1.5 & 2 & 5 & 10
\end{array}
$$

(a) [5 points of 16] Find $\int_{5}^{7} g(f(x)) d x$

Solution:

We use substitution with $w=f(x)=2 x-9$. Then $w^{\prime}(x)=2$, so $d x=\frac{1}{2} d w$, and, noting that $w(5)=1$ and $w(7)=5, \int_{5}^{7} g(f(x)) d x=\int_{1}^{5} \frac{1}{2} \cdot g(w) d w=\frac{1}{2}(12)=6$.
(b) [5 points of 16] Find $\int_{1}^{5} f(x) \cdot g^{\prime}(x) d x$.

Solution:

We integrate by parts using $u=f(x)=2 x-9$ and $v^{\prime}=g^{\prime}$. Then $u^{\prime}=2$ and $v=g$, so that

$$
\begin{aligned}
\int_{1}^{5} f(x) \cdot g^{\prime}(x) d x=\left.f(x) \cdot g(x)\right|_{1} ^{5}-\int_{1}^{5} 2 g(x) d x & =(1) g(5)+7 g(1)-2(12) \\
& =(10)+7(0.1)-24=-13.3
\end{aligned}
$$

(c) $[6$ points of 16$] \quad$ Find $\int_{1}^{5} \frac{g^{\prime}(x)}{g(x)(g(x)+1)} d x$.

Solution:

First, substitute $w=g(x)$. Then $w^{\prime}=g^{\prime}(x), w(1)=g(1)=0.1$ and $w(5)=g(5)=10$, so we get $\int_{1}^{5} \frac{g^{\prime}(x)}{g(x)(g(x)+1)} d x=\int_{0.1}^{10} \frac{1}{w(w+1)} d w$. We can find this by using the partial table of integrals or with partial fractions. From the table (the 8th equation) with $a=0$ and $b=-1, \int_{0.1}^{10} \frac{1}{w(w+1)} d w=$ $\left.(\ln |w|-\ln |w+1|)\right|_{0.1} ^{10}=\ln (10)-\ln (0.1)-\ln (11)+\ln (1.1)=\ln (10) \approx 2.3$.
With partial fractions, $\frac{1}{w(w+1)}=\frac{A}{w}+\frac{B}{w+1}$ requires that $(A+B) w=0$ and $A=1$, so $B=-1$. This gives the result above.

