8. [12 points] The velocity of an object, with air resistance, may in some circumstances be given as

\[v(t) = \sqrt{\frac{g}{k}} \left(\frac{e^{2mt}}{e^{2mt} + 1} - \frac{1}{e^{2mt} + 1} \right) , \]

where \(g \) is the acceleration due to gravity, \(k \) is a constant representing air resistance, and \(m = \sqrt{gk} \).

(a) [2 points of 12] Write an expression for the distance \(D \) that the object falls in the first \(t_0 \) seconds.

Solution:

\[D = \int_0^{t_0} v(t) \, dt = \sqrt{\frac{g}{k}} \int_0^{t_0} \left(\frac{e^{2mt}}{e^{2mt} + 1} - \frac{1}{e^{2mt} + 1} \right) \, dt. \]

(b) [5 points of 12] Find the distance \(D \) (note that half of this calculation is significantly harder than the rest; do not waste too much time on it if you get stuck).

Solution:

We can integrate both parts of the integral with the substitutions \(w = e^{2mt} \), so that \(\frac{1}{2m} \, dw = e^{2mt} \, dt \), or, equivalently, \(dt = \frac{1}{2me^{2mt}} \, dw = \frac{1}{2mw} \, dw \). Then

\[D = \sqrt{\frac{g}{k}} \int_0^{t_0} \left(\frac{e^{2mt}}{e^{2mt} + 1} - \frac{1}{e^{2mt} + 1} \right) \, dt = \sqrt{\frac{g}{k}} \left(\int_1^{e^{2mt_0}} \frac{1}{w+1} \, dw - \int_1^{e^{2mt_0}} \frac{1}{w(w+1)} \, dw \right) \]

\[= \frac{1}{2m} \sqrt{\frac{g}{k}} \left(\ln(e^{2mt_0} + 1) - \ln(2) - (\ln |w| - \ln |w+1|) \right) \]

\[= \frac{1}{2m} \sqrt{\frac{g}{k}} \left(\ln(e^{2mt_0} + 1) - \ln(2) - \ln(e^{2mt_0}) + \ln(e^{2mt_0} + 1) - \ln(2) \right) \]

\[= \sqrt{\frac{g}{k}} \left(\frac{\ln(e^{2mt_0} + 1) - \ln(2)}{m} - t_0 \right) , \]

where we used partial fractions (or a table) to find the second integral.

(c) [5 points of 12] Suppose \(\sqrt{g/k} = 10 \) and \(m = 1 \). Note that in this case \(v(3) = 9.95 \approx 10 \). Use a geometric argument to show that the distance traveled between \(t = 0 \) and \(t = 3 \), \(D(3) \), satisfies the inequality \(15 < D(3) < 30 \).

Solution:

A graph of \(v(t) \) is shown to the right, along with the graph of \(v = 10 \) and \(v = \frac{10}{t} \) (for \(0 \leq t \leq 3 \)). Clearly the actual distance traveled (the area under \(v(t) \)) is between the area under \(v(t) = 10 \) and that under \(v(t) = \frac{10}{t} \). These areas are, respectively, \(d_1 = (10)(3) = 30 \) and \(d_2 = \frac{10}{2}(3)(10) = 15 \). Thus \(15 < D(3) < 30 \).