2. [12 points] Let \(f(x) \) be a positive, continuous and differentiable, non-constant function. Let \(F(x) \) be an antiderivative of \(f \) that passes through the origin. For each of the following, find all values of the constant \(a \) for which the statement is true. Include your work and/or a short explanation so that it is clear how you obtain your answers.

a. [4 points] \(F(x) = \int_a^x f(t) \, dt \)

Solution: This is true if \(a = 0 \). We know that \(F(x) \) and \(\int_a^x f(t) \, dt \) are both antiderivatives of \(f(x) \). \(F(x) \) passes through \((0, 0)\), while \(\int_a^x f(t) \, dt \) passes through \((a, 0)\). Thus \(a = 0 \).

b. [4 points] \(\int_0^a x f'(x) \, dx = f(a) - F(a) \)

Solution: This is true if \(a = 1 \). Using integration by parts, \(\int_0^a x f'(x) \, dx = x f(x) \bigg|_0^a - \int_0^a f(x) \, dx = a f(a) - F(a) \). For this to equal \(f(a) - F(a) \), we must have \(a = 1 \).

c. [4 points] \(\int 5 f\left(\frac{x}{a} \right) \, dx = F\left(\frac{x}{a} \right) + C \)

Solution: This is true when \(a = \frac{1}{5} \). Differentiating both sides of the equation, we get \(5f\left(\frac{x}{a} \right) = \frac{1}{a} F'\left(\frac{x}{a} \right) = \frac{1}{a} f\left(\frac{x}{a} \right) \). Thus \(a \) must equal \(\frac{1}{5} \).

Alternately, integrating the left hand side, we have \(\int 5 f\left(\frac{x}{a} \right) \, dx = 5a F\left(\frac{x}{a} \right) + C \). Thus for the two sides to be equal we must have \(a = \frac{1}{5} \).