3. [14 points] An astute University of Michigan squirrel notes that the length of one strand of the web of a mathematically inclined spider is exactly $\int_{0}^{6} \sqrt{2+2 e^{-x}+e^{-2 x}} d x \mathrm{~cm}$, where x measures the horizontal distance from the wall of a campus building. The strand of web is shown in the figure to the right, below.
a. [7 points] Find an equation $y=f(x)$ that describes the shape of this strand of web.

Solution: We note that the squirrel is integrating to find the arclength of a curve. The arclength of a curve $y=f(x)$ is given by $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$, so we must have $\left(f^{\prime}(x)\right)^{2}=1+2 e^{-x}+e^{-2 x}$. Thus $f^{\prime}(x)= \pm(1+$ $\left.e^{-x}\right)$. To match the graph shown we must take the pos-
 itive sign, so $f(x)=x-e^{-x}+C$, for some constant C. Because the web starts at the origin $((x, y)=(0,0)), C$ must be 1 , so $y=x-e^{-x}+1$.
b. [7 points] Estimate the length of the strand of web using MID(3). Is your estimate an over- or underestimate? How do you know?
Solution: We're estimating the integral $\int_{0}^{6} \sqrt{2+2 e^{-x}+e^{-2 x}} d x$. The three intervals being considered are $0 \leq x \leq 2,2 \leq x \leq 4$, and $4 \leq x \leq 6$, and the midpoints of these intervals are $x=1, x=3$ and 5 . Thus the midpoint approximation is

$$
\operatorname{MID}(3)=2\left(\sqrt{2+2 e^{-1}+e^{-2}}+\sqrt{2+2 e^{-3}+e^{-6}}+\sqrt{2+2 e^{-5}+e^{-10}}\right)
$$

(Which is approximately 9.127 cm .) By graphing the function $g(x)$ we can see that it is concave up, so we know that the midpoint is an underestimate for the actual length.

