5. [6 points] Consider a parametric curve given by $x(t)=f(t), y(t)=g(t)$, where $f(5)=0$, $g(5)=3, f^{\prime}(5)>0$ and $g^{\prime}(5)<0$. Which of the lines D, E, F, or G in the figure below could be the line tangent to the curve $(x(t), y(t))$ at $t=5$? Explain.

Solution: Because $f^{\prime}(5)>0$ and $g^{\prime}(5)<0$, we know that the slope of the tangent line must be $\frac{d y}{d x}=\frac{g^{\prime}(5)}{f^{\prime}(5)}<0$, so the tangent line must be one of F or G. Then we know that when $x(5)=f(5)=0$, $y(5)=g(5)>0$, so the y-intercept of the line must be positive, and we therefore know that the tangent must be line G.

6. [6 points] Find a set of inequalities in polar coordinates that describe the shaded triangle in the figure shown to the right, below.

Solution: The top boundary is $y=1 / 2$, so on that boundary $r \sin (\theta)=1 / 2$, or $r=\frac{1}{2 \sin (\theta)}$. This holds for θ between $\theta=\arctan \left(\frac{1 / 2}{\sqrt{3} / 2}\right)=\frac{\pi}{6}$ and $\theta=\frac{\pi}{2}$, so the inequalities are $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq \frac{1}{2 \sin (\theta)}$. We could also say $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}$, $r \geq 0, r \sin \theta \leq \frac{1}{2}$.
It is also correct to find equations for each of the boundaries
 and to then convert those to polar coordinates. This gives $r \sin \theta \leq \frac{1}{2}, r \cos \theta \geq 0$ and $r \sin \theta \geq \frac{1}{\sqrt{3}} r \cos \theta$. These are, of course, equivalent to the preceding; the first is $r \leq \frac{1}{2 \sin \theta}$, the third gives $\theta \geq \frac{\pi}{6}$, and the second requires that $r \geq 0$ and $\theta \leq \frac{\pi}{2}$ (or $r<0$ and $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$, but these inequalities result in the same region).

