8. [12 points] Some values of the continuous, differentiable function g(x) are given in the table below.

a. [6 points] Estimate the integral $\int_{1}^{4} \frac{g(\sqrt{t})}{\sqrt{t}} dt$ using these data.

Solution: Let $w = \sqrt{t}$. Then $dw = \frac{1}{2\sqrt{t}} dt = \frac{1}{2w} dt$, and the integral is $\int_{1}^{4} g(\sqrt{t}) dt = \int_{1}^{2} 2g(w) dw$. We can estimate this integral from the given data: a left-hand sum is LHS $= \frac{1}{4}(2)(2+3+4+7) = 8$. We could also use a right-hand sum or trapezoid estimate: RHS $= \frac{1}{4}(2)(3+4+7+10) = 12$,

and
$$TRAP = \frac{1}{2}(8+12) = 10.$$

b. [6 points] Estimate the integral $\int_1^4 g(\sqrt{t}) dt$ using these data.

Solution: Let $w = \sqrt{t}$. Then $dw = \frac{1}{2\sqrt{t}} dt = \frac{1}{2w} dt$, and the integral is $\int_1^4 g(\sqrt{t}) dt = \int_1^2 2w g(w) dw$. We can estimate this integral from the given data:

w	1	5/4	3/2	7/4	2
g(w)	2	3	4	7	10
2w g(w)	4	15/2	12	49/2	40

Thus, a left-hand sum gives $\int_1^2 2w g(w) dw \approx \frac{1}{4}(4+15/2+12+49/2) = 12$, a right-hand sum gives $\int_1^2 2w g(w) dw \approx \frac{1}{4}(15/2+12+49/2+40) = 21$, and an average of the two may be expected to be a reasonable estimate for the actual value of the integral: $\int_1^2 2w g(w) dw \approx \frac{33}{2} = 16.5.$