8. [12 points] Some values of the continuous, differentiable function $g(x)$ are given in the table below.

x	1	$5 / 4$	$3 / 2$	$7 / 4$	2
$g(x)$	2	3	4	7	10

a. [6 points] Estimate the integral $\int_{1}^{4} \frac{g(\sqrt{t})}{\sqrt{t}} d t$ using these data.

Solution: Let $w=\sqrt{t}$. Then $d w=\frac{1}{2 \sqrt{t}} d t=\frac{1}{2 w} d t$, and the integral is $\int_{1}^{4} g(\sqrt{t}) d t=$ $\int_{1}^{2} 2 g(w) d w$. We can estimate this integral from the given data: a left-hand sum is

$$
\text { LHS }=\frac{1}{4}(2)(2+3+4+7)=8 .
$$

We could also use a right-hand sum or trapezoid estimate:

$$
\begin{gathered}
\text { RHS }=\frac{1}{4}(2)(3+4+7+10)=12, \\
\text { and } \\
\operatorname{TRAP}=\frac{1}{2}(8+12)=10 .
\end{gathered}
$$

b. [6 points] Estimate the integral $\int_{1}^{4} g(\sqrt{t}) d t$ using these data.

Solution: Let $w=\sqrt{t}$. Then $d w=\frac{1}{2 \sqrt{t}} d t=\frac{1}{2 w} d t$, and the integral is $\int_{1}^{4} g(\sqrt{t}) d t=$ $\int_{1}^{2} 2 w g(w) d w$. We can estimate this integral from the given data:

w	1	$5 / 4$	$3 / 2$	$7 / 4$	2
$g(w)$	2	3	4	7	10
$2 w g(w)$	4	$15 / 2$	12	$49 / 2$	40

Thus, a left-hand sum gives $\int_{1}^{2} 2 w g(w) d w \approx \frac{1}{4}(4+15 / 2+12+49 / 2)=12$, a right-hand sum gives $\int_{1}^{2} 2 w g(w) d w \approx \frac{1}{4}(15 / 2+12+49 / 2+40)=21$, and an average of the two may be expected to be a reasonable estimate for the actual value of the integral:

$$
\int_{1}^{2} 2 w g(w) d w \approx \frac{33}{2}=16.5 .
$$

