6. [10 points] The distance between two points (x_1, y_1) and (x_2, y_2) is given by

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Consider the curve described by $y = \sqrt{3x^2 - 3}$, over the domain $2 \le x \le 4$. What is the average distance of the points on this curve to the point (2,0)?

Solution: A point on the curve has coordinates $(x, \sqrt{3x^2 - 3})$, so the distance from an arbitrary point on the curve to the point (2,0) is given by

$$D = \sqrt{(x-2)^2 + (\sqrt{3x^2 - 3} - 0)^2}$$

= $\sqrt{x^2 - 4x + 4 + 3x^2 - 3}$
= $\sqrt{4x^2 - 4x + 1}$
= $\sqrt{(2x-1)^2}$
= $2x - 1$

We can use a definite integral to find the average distance over the domain $2 \le x \le 4$.

avg. distance =
$$\frac{1}{4-2} \int_{2}^{4} (2x-1)dx$$

= $\frac{1}{2}(x^{2}-x)|_{2}^{4}$
= $\frac{1}{2}(12-2)$
= 5

The average distance between a point on the curve $y = \sqrt{3x^2 - 3}$ over the domain $2 \le x \le 4$ is 5.