6. [10 points] The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Consider the curve described by $y=\sqrt{3 x^{2}-3}$, over the domain $2 \leq x \leq 4$. What is the average distance of the points on this curve to the point $(2,0)$?

Solution: A point on the curve has coordinates $\left(x, \sqrt{3 x^{2}-3}\right)$, so the distance from an arbitrary point on the curve to the point $(2,0)$ is given by

$$
\begin{aligned}
D & =\sqrt{(x-2)^{2}+\left(\sqrt{3 x^{2}-3}-0\right)^{2}} \\
& =\sqrt{x^{2}-4 x+4+3 x^{2}-3} \\
& =\sqrt{4 x^{2}-4 x+1} \\
& =\sqrt{(2 x-1)^{2}} \\
& =2 x-1
\end{aligned}
$$

We can use a definite integral to find the average distance over the domain $2 \leq x \leq 4$.

$$
\begin{aligned}
\text { avg. distance } & =\frac{1}{4-2} \int_{2}^{4}(2 x-1) d x \\
& =\left.\frac{1}{2}\left(x^{2}-x\right)\right|_{2} ^{4} \\
& =\frac{1}{2}(12-2) \\
& =5
\end{aligned}
$$

The average distance between a point on the curve $y=\sqrt{3 x^{2}-3}$ over the domain $2 \leq x \leq 4$ is 5 .

