1. [12 points] Indicate if each of the following is true or false by circling the correct answer (Justify your answer):
a. [3 points] If $F(t)$ and $G(t)$ are antiderivatives of the function $f(t)$ with $F(0)=1$ and $G(0)=3$ then $F(2)-G(2)=1$.

True
False
Solution: $\quad F(2)-G(2)=F(0)-G(0)=1-3=-2$
b. [3 points] If $h(t)>0$ for $0 \leq t \leq 1$, then the function $H(x)=\int_{0}^{x} h(t) d t$ is concave up for $0 \leq x \leq 1$.

True False
Solution: $\quad H^{\prime}(x)=h(x)>0$, hence $H(x)$ is increasing in $0 \leq x \leq 1$, but not necessarily concave up. You need $H^{\prime \prime}(x)=h^{\prime}(x)>0$ for $H(x)$ to be concave up.
c. [3 points] If $\int_{0}^{2} g(t) d t=6$ then $\int_{2}^{3} 3 g(2 t-4) d t=9$.

True False
Solution: Using $u=2 t-4$ then $\int_{2}^{3} 3 g(2 t-4) d t=\frac{3}{2} \int_{0}^{2} g(u) d u=9$
d. [3 points] $\frac{d}{d x}\left(\int_{-x^{2}}^{\sin x} e^{t^{3}} d t\right)=\cos x e^{x^{3}}+2 x e^{x^{3}}$.

True
False

$$
\text { Solution: } \quad \frac{d}{d x}\left(\int_{-x^{2}}^{\sin x} e^{t^{3}} d t\right)=\cos x e^{\sin ^{3} x}+2 x e^{-x^{6}}
$$

