- 1. [12 points] Indicate if each of the following is true or false by circling the correct answer (Justify your answer):
 - **a.** [3 points] If F(t) and G(t) are antiderivatives of the function f(t) with F(0) = 1 and G(0) = 3 then F(2) G(2) = 1.

True False

Solution: F(2) - G(2) = F(0) - G(0) = 1 - 3 = -2

b. [3 points] If h(t) > 0 for $0 \le t \le 1$, then the function $H(x) = \int_0^x h(t)dt$ is concave up for $0 \le x \le 1$.

True False

Solution: H'(x) = h(x) > 0, hence H(x) is increasing in $0 \le x \le 1$, but not necessarily concave up. You need H''(x) = h'(x) > 0 for H(x) to be concave up.

c. [3 points] If $\int_0^2 g(t)dt = 6$ then $\int_2^3 3g(2t-4)dt = 9$.

True False

Solution: Using u = 2t - 4 then $\int_{2}^{3} 3g(2t - 4)dt = \frac{3}{2} \int_{0}^{2} g(u)du = 9$

d. [3 points] $\frac{d}{dx} \left(\int_{-x^2}^{\sin x} e^{t^3} dt \right) = \cos x \ e^{x^3} + 2xe^{x^3}.$

True False

Solution: $\frac{d}{dx} \left(\int_{-x^2}^{\sin x} e^{t^3} dt \right) = \cos x \ e^{\sin^3 x} + 2xe^{-x^6}.$