7. [13 points] Household electricity in the United States is supplied in the form of an alternating current that varies sinusoidally with a frequency of 60 cycles per second (Hz). The voltage is given by the equation

$$
E(t)=170 \sin (120 \pi t),
$$

where t is given in seconds and E is in volts.
a. [7 points] Using integration by parts, find $\int \sin ^{2} \theta d \theta$. Show all work to receive full credit. (Hint: $\sin ^{2} \theta+\cos ^{2} \theta=1$.)
Solution: We first note that $\int \sin ^{2} \theta d \theta=\int \sin \theta(\sin \theta) d \theta$, so that we may take $u=$ $\sin \theta, d v=\sin \theta d \theta$ (and $d u=\cos \theta d \theta, v=-\cos \theta$). Then integration by parts gives

$$
\begin{aligned}
\int \sin ^{2} \theta d \theta & =\sin \theta(-\cos \theta)-\int-\cos \theta(\cos \theta) d \theta \\
& =-\sin \theta \cos \theta+\int \cos ^{2} \theta d \theta
\end{aligned}
$$

Using the trig. identity given in the hint, we obtain

$$
\int \sin ^{2} \theta d \theta=-\sin \theta \cos \theta+\int\left(1-\sin ^{2} \theta\right) d \theta=-\sin \theta \cos \theta+\int d \theta-\int \sin ^{2} \theta .
$$

The integral on the far right also appears on the left, so combining like terms, we get

$$
\begin{aligned}
2 \int \sin ^{2} \theta d \theta & =-\sin \theta \cos \theta+\int d \theta \\
\int \sin ^{2} \theta d \theta & =\frac{1}{2}\left(-\sin \theta \cos \theta+\int d \theta\right) \\
& =-\frac{1}{2} \sin \theta \cos \theta+\frac{\theta}{2}+C .
\end{aligned}
$$

b. [6 points] Voltmeters read the root-mean-square (RMS) voltage, which is defined to be the square root of the average value of $[E(t)]^{2}$ over one cycle. Find the exact RMS voltage of household current.

Solution: Since the frequency of the current is 60 cycles per second, one cycle is completed every $\frac{1}{60}$ seconds. Thus

$$
\begin{aligned}
\text { RMS voltage } & =\sqrt{\frac{1}{\frac{1}{60}-0} \int_{0}^{\frac{1}{60}} E(t)^{2} d t} \\
& =\sqrt{60 \int_{0}^{\frac{1}{60}} 170^{2} \sin ^{2}(120 \pi t) d t}
\end{aligned}
$$

Substituting $w=120 \pi t, d w=120 \pi d t$, we get

$$
\begin{aligned}
\text { RMS voltage } & =\sqrt{60 \int_{w(0)}^{w\left(\frac{1}{60}\right)} 170^{2} \sin ^{2}(w) \cdot \frac{1}{120 \pi} d w} \\
& =\sqrt{\frac{170^{2}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(w) d w} .
\end{aligned}
$$

Using the antiderivative we found in part (a) with $C=0$, the Fundamental Theorem of Calculus gives
$\begin{aligned} \text { RMS voltage } & =\sqrt{\left.\frac{170^{2}}{2 \pi}\left(-\frac{1}{2} \sin \theta \cos \theta+\frac{\theta}{2}\right)\right|_{0} ^{2 \pi}} \\ & =\sqrt{\frac{170^{2}}{2 \pi}\left(\left(-\frac{1}{2} \sin (2 \pi) \cos (2 \pi)+\frac{2 \pi}{2}\right)-\left(-\frac{1}{2} \sin (0) \cos (0)+\frac{0}{2}\right)\right)}=\frac{170}{\sqrt{2}} \text { Volts. }\end{aligned}$
Note that due to the periodicity of the sine function, the average value over one cycle could also have been computed over $0 \leq t \leq 1$ (or any other number of periods).

