1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.

 a. [2 points] Let \(u(x) \) and \(v(x) \) be differentiable functions with \(u(0) = u(1) = 0 \), then
 \[
 \int_0^1 u(x)v'(x) \, dx = -\int_0^1 u'(x)v(x) \, dx.
 \]
 True False

 b. [2 points] The function \(f(x) = \int_0^x e^{t^2} \, dt \) is decreasing for \(x < 0 \).
 True False

 c. [2 points] For any differentiable function \(f(x) \)
 \[
 \int_0^x f'(t) \, dt = \frac{d}{dx} \left(\int_0^x f(t) \, dt \right).
 \]
 True False

 d. [2 points] If the mass density function of a square plate (shown below) is \(\delta(y) \), an even function of \(y \) only, then the center of mass of the plate lies on the \(x \)-axis.

 ![Diagram](image)
 True False

 e. [2 points] If we use the trapezoidal rule to approximate the integral \(I = \int_0^1 (1 + 2t) \, dt \) then \(\text{Trap}(n) \) is exactly equal to \(I \) for every \(n \).
 True False

 f. [2 points] If \(f(x) \) is concave up, then the average value of \(f(x) \) on the interval \([0, 2]\) is larger than \(f(1) \).
 True False