1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Let $u(x)$ and $v(x)$ be differentiable functions with $u(0)=u(1)=0$, then

$$
\int_{0}^{1} u(x) v^{\prime}(x) d x=-\int_{0}^{1} u^{\prime}(x) v(x) d x .
$$

True
False
b. [2 points] The function $f(x)=\int_{0}^{x^{2}} e^{t^{2}} d t$ is decreasing for $x<0$.

True
False
c. [2 points] For any differentiable function $f(x)$

$$
\int_{0}^{x} f^{\prime}(t) d t=\frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right) .
$$

True
False
d. [2 points] If the mass density function of a square plate (shown below) is $\delta(y)$, an even function of $y$ only, then the center of mass of the plate lies on the $x$-axis.


True
False
e. [2 points] If we use the trapezoidal rule to approximate the integral $I=\int_{0}^{1}(1+2 t) d t$ then $\operatorname{Trap}(\mathrm{n})$ is exactly equal to $I$ for every $n$.

True
False
f. [2 points] If $f(x)$ is concave up, then the average value of $f(x)$ on the interval $[0,2]$ is larger than $f(1)$.

True
False

