2. [18 points] The graph of the function \(f(x) \), shown below, consists of line segments and a semicircle. Compute each of the following quantities.

![Graph of f(x)](image)

a. [7 points]

1. \(\int_{0}^{2} f(x) \, dx = \)

2. \(\int_{-2}^{2} |f(x)| \, dx = \)

3. \(\int_{0}^{5} f(x) \, dx = \)

4. \(\int_{-2}^{2} 2f(x) \, dx + \int_{5}^{2} 3f(x) \, dx = \)

5. The average \(A \) of \(f(x) \) on the interval \([-2, 5]\). \(A = \)

6. \(\int_{0}^{1} f(5x) \, dx = \)
b. [4 points]

If $f(x)$ is the derivative of a function $g(x)$ with $g(2) = 1$, fill in the table of values of $g(x)$, provided below, at the specified points (the graph has been reproduced for your convenience):

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(x)$</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. [5 points] Graph $g(x)$. Make sure your graph indicates the intervals on which $g(x)$ is increasing, decreasing, concave up, and concave down.

d. [2 points] Let $h(x) = \int_{0}^{x} f(t)dt$. Find a constant C such that $g(x) = h(x) + C$. Show all your work.