1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Let $u(x)$ and $v(x)$ be differentiable functions with $u(0)=u(1)=0$, then

$$
\int_{0}^{1} u(x) v^{\prime}(x) d x=-\int_{0}^{1} u^{\prime}(x) v(x) d x
$$

False
Solution: Using integration by parts

$$
\int_{0}^{1} u(x) v^{\prime}(x) d x=-\left.u(x) v(x)\right|_{0} ^{1}-\int_{0}^{1} u^{\prime}(x) v(x) d x=-\int_{0}^{1} u^{\prime}(x) v(x) d x
$$

b. [2 points] The function $f(x)=\int_{0}^{x^{2}} e^{t^{2}} d t$ is decreasing for $x<0$.
True

False
Solution: $\quad f^{\prime}(x)=2 x e^{x^{4}}<0$ for $x<0$, hence $f(x)$ is decreasing for $x<0$.
c. [2 points] For any differentiable function $f(x)$

$$
\int_{0}^{x} f^{\prime}(t) d t=\frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right)
$$

True
False

Solution:

$$
\begin{aligned}
\int_{0}^{x} f^{\prime}(t) d t & =f(x)-f(0) \text { by the Fundamental Theorem of Calculus } \\
\frac{d}{d x}\left(\int_{0}^{x} f(t) d t\right) & =f(x) \text { by the Second Fundamental Theorem of Calculus }
\end{aligned}
$$

Hence it is not true for functions for which $f(0) \neq 0$, example $f(x)=x+1$.
d. [2 points] If the mass density function of a square plate (shown below) is $\delta(y)$, an even function of y only, then the center of mass of the plate lies on the x-axis.

Solution: The y-coordinate of the center of mass is given by

$$
\bar{y}=\frac{\int_{-1}^{1} 2 \delta(y) y d y}{\int_{-1}^{1} 2 \delta(y) d y}=0 .
$$

Since the integrand $2 \delta(y) y$ is an odd function of y, then $\int_{-1}^{1} 2 \delta(y) y d y=0$.
e. [2 points] If we use the trapezoidal rule to approximate the integral $I=\int_{0}^{1}(1+2 t) d t$ then $\operatorname{Trap}(\mathrm{n})$ is exactly equal to I for every n.

True False
Solution: The area represented by $\int_{0}^{1}(1+2 t) d t$ is a trapezoid, hence the trapezoid rule gives you the exact value of this area.
f. [2 points] If $f(x)$ is concave up, then the average value of $f(x)$ on the integral $[0,2]$ is larger than $f(1)$.

$$
\text { True } \quad \text { False }
$$

Solution: If A is the average value of $f(x)$ on the interval [0,2], then $2 A=\int_{0}^{2} f(x) d x$. We know that if $f(x)$ is concave up, then $\operatorname{Mid}(1)=2 f(1)<\int_{0}^{2} f(x) d x=2 A$. Hence $f(1)<A$.

