5. [12 points] Oil leaks from a tank on the shore of a lake to form a semicircular slick on the surface of the water (as shown in the figure below). A team of environmentalists is trying to estimate the amount of oil spilled. They took measurements of the density P of oil (in kg per m²) in the slick and found that it was a function of the distance r (in m) from the source of the oil.

The values of P(r) measured by the environmentalists are shown in the table below.

r	0	50	100	150	200
P(r)	100	40	12	10	8

a. [6 points] Write an expression involving integrals for the exact value of the mass of the oil in the lake inside a semicircle centered at the oil leak with a radius of 200 meters (see the figure above). Include units.

Solution:
$$\operatorname{Mass}_{oil} = \int_0^{200} \pi r P(r) dr$$
 kg.

b. [4 points] Find approximations to your answer in part (**a**) using Left(4) and Right(4). Show your work by writing all the terms of the sums.

-	-
(1 - I	
501	1ITIAN '
$\nu \nu \nu$	1000010.

r	0	50	100	150	200
P(r)	100	40	12	10	8
$\pi r P(r)$	0	6,283.2	3,769.9	4,712.4	5,026.5

Left(4) = 50(6, 283.2 + 3, 769.9 + 4, 712.4) = 738, 274.27 kg Right(4) = 50(6, 283.2 + 3, 769.9 + 4, 712.4 + 5, 026.5) = 989, 601.68 kg

c. [2 points] The environmentalists notice that the density P(r) of oil is a decreasing function. Does this observation guarantee that one of the approximations in part (b) yields an overestimate? If so, which one? Justify.

Solution: To get an overestimate, the function $Q(r) = \pi r P(r)$ needs to be either increasing or decreasing for $0 \le r \le 200$. The fact that P(r) is decreasing it is not enough. In this case, Q(r) is neither increasing or decreasing (look at its values at r = 0, 50, 100).