3. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Let $F(x)$ be an antiderivative of a function $f(x)$. Then $F(2 x)$ is an antiderivative of the function $f(2 x)$.

True
False
b. [2 points] If $f(x)$ is a linear function on $[0,1]$, then the midpoint rule computes the exact value of $\int_{0}^{1} f(x) d x$.

True
False
c. [2 points] If $f(x)$ is a negative function that satisfies $f^{\prime}(x)>0$ for $0 \leq x \leq 1$. Then the right hand sums always yield an underestimate for the value of $\int_{0}^{1}(f(x))^{2} d x$.

True
False
d. [2 points] If a and b are positive constants, then $\int e^{a x^{2}+b} d x=\frac{1}{2 a x} e^{a x^{2}+b}+C$.

True
False
e. [2 points] The average value of $f(x) g(x)$ on an interval $[a, b]$ is the average value of $f(x)$ on $[a, b]$ times the average value of $g(x)$ on $[a, b]$.

True False
f. [2 points] If $k>0$ is a constant, the arclength of the function $y=k f(x)$ on an interval $[a, b]$ is k times the arclength of $y=f(x)$ on $[a, b]$.

True False

