3. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.

a. [2 points] Let \(F(x) \) be an antiderivative of a function \(f(x) \). Then \(F(2x) \) is an antiderivative of the function \(f(2x) \).

\[\text{True} \quad \text{False} \]

b. [2 points] If \(f(x) \) is a linear function on \([0, 1]\), then the midpoint rule computes the exact value of \(\int_0^1 f(x)dx \).

\[\text{True} \quad \text{False} \]

c. [2 points] If \(f(x) \) is a negative function that satisfies \(f'(x) > 0 \) for \(0 \leq x \leq 1 \). Then the right hand sums always yield an underestimate for the value of \(\int_0^1 (f(x))^2dx \).

\[\text{True} \quad \text{False} \]

d. [2 points] If \(a \) and \(b \) are positive constants, then \(\int e^{ax^2+b}dx = \frac{1}{2ax}e^{ax^2+b}+C \).

\[\text{True} \quad \text{False} \]

e. [2 points] The average value of \(f(x)g(x) \) on an interval \([a, b]\) is the average value of \(f(x) \) on \([a, b]\) times the average value of \(g(x) \) on \([a, b]\).

\[\text{True} \quad \text{False} \]

f. [2 points] If \(k > 0 \) is a constant, the arclength of the function \(y = kf(x) \) on an interval \([a, b]\) is \(k \) times the arclength of \(y = f(x) \) on \([a, b]\).

\[\text{True} \quad \text{False} \]