3. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Let $F(x)$ be an antiderivative of a function $f(x)$. Then $F(2 x)$ is an antiderivative of the function $f(2 x)$.

True \quad False
Solution: Let $f(x)=3 x^{2}$, then an antiderivative is $F(x)=x^{3}$ since $F^{\prime}(x)=3 x^{2}=f(x)$, but $F(2 x)=(2 x)^{3}=8 x^{3}$ is not an antiderivative of $f(2 x)=3(2 x)^{2}=12 x^{2}$ since $\frac{d}{d x}(F(2 x))=\frac{d}{d x}\left(8 x^{3}\right)=24 x^{2} \neq f(2 x)=12 x^{2}$.
b. [2 points] If $f(x)$ is a linear function on $[0,1]$, then the midpoint rule computes the exact value of $\int_{0}^{1} f(x) d x$.

True
 False

Solution:
c. [2 points] If $f(x)$ is a negative function that satisfies $f^{\prime}(x)>0$ for $0 \leq x \leq 1$. Then the right hand sums always yield an underestimate for the value of $\int_{0}^{1}(f(x))^{2} d x$.

True False
Solution: Let $g(x)=f(x)^{2}$, then $g^{\prime}(x)=2 f(x) f^{\prime}(x)<0$ on $[0,1]$. Since $g(x)$ is decreasing, then the right hand sum yields an underestimate for $\int_{0}^{1} g(x) d x=\int_{0}^{1}(f(x))^{2} d x$
d. [2 points] If a and b are positive constants, then $\int e^{a x^{2}+b} d x=\frac{1}{2 a x} e^{a x^{2}+b}+C$.

True

False
Solution: Since $\frac{d}{d x}\left(\frac{1}{2 a x} e^{a x^{2}+b}\right) \neq e^{a x^{2}+b}$, then the formula above is not true.
e. [2 points] The average value of $f(x) g(x)$ on an interval $[a, b]$ is the average value of $f(x)$ on $[a, b]$ times the average value of $g(x)$ on $[a, b]$.

True
False
Solution: Let $f(x)=x, g(x)=1-x$ and $[a, b]=[0,1]$, then $\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x=\frac{1}{2}$, but $\int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} x(1-x) d x=\frac{1}{6} \neq\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}$.
f. [2 points] If $k>0$ is a constant, the arclength of the function $y=k f(x)$ on an interval $[a, b]$ is k times the arclength of $y=f(x)$ on $[a, b]$.

True
False
Solution: Let $f(x)=1,[a, b]=[0,1]$ and $k=2$, then the arclength of $f(x)$ on $[0,1]$ is 1. The arclength of $y=2 f(x)$ on $[0,1]$ is 1 , $\operatorname{not} 2(1)=2$.

