3. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.

a. [2 points] Let \(F(x) \) be an antiderivative of a function \(f(x) \). Then \(F(2x) \) is an antiderivative of the function \(f(2x) \).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

Solution: Let \(f(x) = 3x^2 \), then an antiderivative is \(F(x) = x^3 \) since \(F'(x) = 3x^2 = f(x) \), but \(F(2x) = (2x)^3 = 8x^3 \) is not an antiderivative of \(f(2x) = 3(2x)^2 = 12x^2 \) since \(\frac{d}{dx} F(2x) = \frac{d}{dx} (8x^3) = 24x^2 \neq f(2x) = 12x^2 \).

b. [2 points] If \(f(x) \) is a linear function on \([0, 1]\), then the midpoint rule computes the exact value of \(\int_0^1 f(x)\,dx \).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

c. [2 points] If \(f(x) \) is a negative function that satisfies \(f'(x) > 0 \) for \(0 \leq x \leq 1 \). Then the right hand sums always yield an underestimate for the value of \(\int_0^1 (f(x))^2\,dx \).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

Solution: Let \(g(x) = f(x)^2 \), then \(g'(x) = 2f(x)f'(x) < 0 \) on \([0, 1]\). Since \(g(x) \) is decreasing, then the right hand sum yields an underestimate for \(\int_0^1 g(x)\,dx = \int_0^1 (f(x))^2\,dx \).

d. [2 points] If \(a \) and \(b \) are positive constants, then \(\int e^{ax+b}dx = \frac{1}{2ax} e^{ax+b} + C \).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

Solution: Since \(\frac{d}{dx} \left(\frac{1}{2ax} e^{ax+b} \right) \neq e^{ax+b} \), then the formula above is not true.

e. [2 points] The average value of \(f(x)g(x) \) on an interval \([a, b]\) is the average value of \(f(x) \) on \([a, b]\) times the average value of \(g(x) \) on \([a, b]\).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

Solution: Let \(f(x) = x, g(x) = 1-x \) and \([a, b] = [0, 1]\), then \(\int_0^1 f(x)\,dx = \int_0^1 g(x)\,dx = \frac{1}{2} \), but \(\int_0^1 f(x)g(x)\,dx = \int_0^1 x(1-x)\,dx = \frac{1}{6} \neq \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{4} \).

f. [2 points] If \(k > 0 \) is a constant, the arclength of the function \(y = kf(x) \) on an interval \([a, b]\) is \(k \) times the arclength of \(y = f(x) \) on \([a, b]\).

\[
\begin{array}{ll}
\text{True} & \text{False} \\
\end{array}
\]

Solution: Let \(f(x) = 1, [a, b] = [0, 1] \) and \(k = 2 \), then the arclength of \(f(x) \) on \([0, 1]\) is 1. The arclength of \(y = 2f(x) \) on \([0, 1]\) is 1, not 2(1) = 2.