5. [12 points] Franklin, your robot, goes to the local store and buys a new chef's knife. The handle of the knife is given by the region contained between the lines $y=7, y=4, x=0$ and $x=10$. The blade of the knife is in the shape of the region bounded by the line $x=10, y=7$ and the curve $y=\frac{7(x-10)^{2}}{400}$. Assume all lengths are in centimeters. Below is a diagram of the knife.

Assume that the density of the knife is constant, with value $\delta \mathrm{kg} / \mathrm{cm}^{2}$.
a. [2 points] Find the total mass of the handle of the knife. Include units.

Solution:

$$
\text { Mass of handle }=3 \cdot 10 \cdot \delta=30 \delta \quad \text { kilograms }
$$

b. [4 points] Write an expression involving integrals that gives the total mass of the blade of the knife. Do not evaluate any integrals.
Solution:

$$
\text { Mass of blade }=\int_{10}^{30} \delta\left(7-\frac{7(x-10)^{2}}{400}\right) d x=\frac{280}{3} \delta \quad \text { kilograms }
$$

c. [2 points] Write an expression involving integrals that gives the x-coordinate of the center of mass of the blade portion of the knife. Do not evaluate any integrals.

Solution:

$$
\bar{x}=\frac{\int_{10}^{30} x\left(7-\frac{7(x-10)^{2}}{400}\right) d x}{\int_{10}^{30} 7-\frac{7(x-10)^{2}}{400} d x}
$$

d. [4 points] Write an expression involving integrals that gives the x-coordinate of the center of mass of the whole knife (the blade and handle together). Do not evaluate any integrals.
Solution:

$$
\bar{x}=\frac{\int_{0}^{10} 3 x d x+\int_{10}^{30} x\left(7-\frac{7(x-10)^{2}}{400}\right) d x}{30+\int_{10}^{30} 7-\frac{7(x-10)^{2}}{400} d x}
$$

