2. [16 points] The local sparrow population has been fluctuating unnaturally, and Raymond Green has five months of data to prove it. Let $S(t)$ denote the local sparrow population in thousands, t months after Green started collecting data. A graph of $S^{\prime}(t)$, the rate of population growth, is below. Assume there are 2000 sparrows at $t=1$.

a. [1 point] At which t-value(s) is the sparrow population increasing the fastest?

Solution: The population is increasing fastest at $t=1$.
b. [3 points] What is the local sparrow population at $t=0, t=2$ and $t=3$?

Solution: The population is 500 at $t=0,3000$ at $t=2$, and 2000 at $t=3$.
c. [2 points] At which t-values is the population at its highest and lowest?

Solution: The population is highest at $t=5$ and lowest at $t=0$.

2 (continued). Recall that $S(t)$ is the local sparrow population in thousands, t months after Green began collecting data.

d. [10 points] Sketch a graph of $S(t)$ on the axes below, recalling that there are 2000 sparrows at $t=1$. Label your vertical axis. Make sure that concavity and local extrema are clear.

