7. [6 points] Suppose that g is a continuous function, and define another function G by

$$
G(x)=\int_{0}^{x} g(t) d t .
$$

Given that $\int_{0}^{7} g(x) d x=5$, compute

$$
\int_{0}^{7} g(x)(G(x))^{2} d x
$$

Show each step of your computation.
Solution: Substitution gives

$$
\int_{0}^{7} g(x)(G(x))^{2} d x=\int_{G(0)}^{G(7)} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{0} ^{5}=\frac{125}{3} .
$$

Alternatively, integrate by parts to obtain

$$
\int_{0}^{7} g(x)(G(x))^{2} d x=\left.(G(x))^{3}\right|_{0} ^{7}-2 \int_{0}^{7} g(x)(G(x))^{2} d x
$$

which after rearranging gives

$$
\int_{0}^{7} g(x)(G(x))^{2} d x=\frac{1}{3}\left(\left.(G(x))^{3}\right|_{0} ^{7}\right)=\frac{125}{3} .
$$

