1. [12 points] The table below gives several values of a decreasing, differentiable function G.

x	-4	-3	-2	-1	0	1	2	3	4
G(x)	7	5	4	2	-2	-3	-6	-8	-9

a. [4 points] Use the midpoint rule with 3 subintervals to estimate $\int_{-4}^{2} (tG(t) + 4) dt$.

Carefully write out each of the terms involved in your estimate.

You do **not** have to simplify. However, no variables or function names should appear in your answer.

In parts **b** and **c** below, calculate the <u>exact</u> numerical value of the integral.

If it is not possible to do so, write "NOT POSSIBLE". Show each step of your work clearly.

b. [3 points]
$$\int_{-2}^{2} 6G'(2y) dy$$

c. [5 points]
$$\int_0^3 \frac{G'(x) G(x)}{(2G(x) - 3)(G(x) + 1)} dx$$