- 6. [12 points] Let \mathcal{R} be the shaded region in the first quadrant shown below. The region \mathcal{R} is bounded by: $y \pmod{y}$
 - the y-axis,
 - the graph of $y = \frac{x^2}{2}$, and
 - the graph of $x = -3 + \frac{y}{2}$.

The units on both axes are millimeters (mm).

a. [4 points] Write, but do NOT evaluate, an expression involving one or more integrals that gives the volume, in mm³, of the solid whose base is the region \mathcal{R} and whose cross-sections perpendicular to the *x*-axis are squares.

Answer: Volume = $_$

b. [4 points] Write, but do NOT evaluate, an expression involving one or more integrals that gives the volume, in mm^3 , of the solid formed by rotating the region \mathcal{R} around the *y*-axis.

Answer: Volume = _____

c. [4 points] Write, but do NOT evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region \mathcal{R} that has mass density given by $\delta(x) = (1 + x^2) \text{ g/mm}^2$.

Answer: $Mass = _$