6. [12 points] Let \mathcal{R} be the shaded region in the first quadrant shown below.

The region \mathcal{R} is bounded by:

- the y-axis,
- the graph of $y=\frac{x^{2}}{2}$, and
- the graph of $x=-3+\frac{y}{2}$.

The units on both axes are millimeters (mm).

a. [4 points] Write, but do nOt evaluate, an expression involving one or more integrals that gives the volume, in mm^{3}, of the solid whose base is the region \mathcal{R} and whose cross-sections perpendicular to the x-axis are squares.

Answer: Volume $=$ \qquad
b. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the volume, in mm^{3}, of the solid formed by rotating the region \mathcal{R} around the y-axis.

Answer: Volume $=$ \qquad
c. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region \mathcal{R} that has mass density given by $\delta(x)=\left(1+x^{2}\right) \mathrm{g} / \mathrm{mm}^{2}$.

Answer: Mass = \qquad

