7. [12 points] Note that the problems on this page do not depend on each other.

 a. [4 points] Suppose \(F(x) \) is an antiderivative of \(f(x) = e^{-x^2} \) such that \(F(2) = 10 \). Write an integral expression for the function \(F(x) \). (Your expression should not involve the letters \(f \) or \(F \).) Remember to be careful with notation.

 Answer: \(F(x) = \theta \)

 b. [4 points] Suppose \(H(x) \) is an antiderivative of \(h(x) = \sin(x^2) \). Write an expression for the average value of \(h(x) \) on the interval \([-1, 1]\). Your expression should not involve any integrals but may involve function names.

 Answer: Average Value = \(\eta \)

 c. [4 points] Suppose \(G(x) \) is an antiderivative of \(g(x) = \sqrt{x^4 - 1} \) for \(x > 1 \).

 Find the arc length of the graph of \(G(x) \) from \(x = 2 \) to \(x = 3 \). Show your work.

 You may use your calculator to evaluate any integrals. Give the exact answer or round to two decimal places.

 Answer: Arc Length = \(\zeta \)