3. [8 points]
Consider a tent that is 50 meters tall whose base is a regular hexagon (i.e. a 6-sided polygon with equal length sides and equal angles) and whose horizontal cross-sections are also regular hexagons.
(See figure on the right.)
Suppose the perimeter of the base is 72 meters.
Let $P(y)$ be the perimeter, in meters, of a horizontal cross section y meters above the ground.

a. [2 points] It turns out that $P(y)$ is a linear function of the variable y.
 (You do not need to verify this.) Find a formula for $P(y)$.

 \[
 \begin{array}{c|c}
 y & P(y) \\
 \hline
 0 & 72 \\
 50 & 0 \\
 \end{array}
 \]

 \[
 \text{Slope} = \frac{0 - 72}{50 - 0} = -1.44
 \]

 \[
 \text{Answer: } P(y) = 72 - 1.44y
 \]

b. [3 points] The area of a regular hexagon with perimeter p is equal to $\frac{\sqrt{3}}{24}p^2$.

 Write an expression that gives the approximate volume, in cubic meters, of a horizontal slice of the region inside the tent that is Δy meters thick and y meters above the ground. (Assume here that Δy is small but positive.) Your expression should not involve any integrals.

 \[
 \text{Area of slice} = \frac{\sqrt{3}}{24} P(y)^2 = \frac{\sqrt{3}}{24} \left(72 - 1.44y\right)^2
 \]

 \[
 \text{Volume of slice} = \frac{\sqrt{3}}{24} \left(72 - 1.44y\right)^2 \Delta y
 \]

 \[
 \text{Answer: Volume of slice} \approx \frac{\sqrt{3}}{24} \left(72 - 1.44y\right)^2 \Delta y
 \]

c. [3 points] Write, but do not evaluate, an expression involving one or more integrals that gives the total volume, in cubic meters, inside the tent.

 \[
 \int_0^{50} \frac{\sqrt{3}}{24} \left(72 - 1.44y\right)^2 dy
 \]

 \[
 \text{Answer: Volume} = \int_0^{50} \frac{\sqrt{3}}{24} \left(72 - 1.44y\right)^2 dy = 36000\sqrt{3} \text{ m}^3
 \]