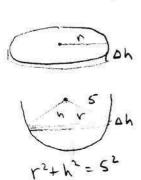

8. [12 points]


Alicia is building a pond in her backyard. The pond will be in the shape of hemisphere with radius 5 meters. A side view of the hole for the pond is shown in the figure on the right.

Note: The curved region shown is a semicircle of radius 5 meters, and cross-sections of the hole parallel to the ground are circles.

Alicia discovers that the density (in kg/m³) of the dirt in her yard is given by the function $\rho(h) = 1.5 + (h-1)^3$ where h is distance (in meters) below ground. In this problem, you may assume the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$.

a. [4 points] Write an expression that gives the approximate mass of a horizontal slice of dirt with thickness Δh meters that is h meters below the ground. See diagram. (Assume that Δh is small but positive.) Your expression should <u>not</u> involve any integrals.

radius of slice =
$$\sqrt{25-h^2}$$
 m
volume of slice = $\pi r^2 \Delta h = \pi (25-h^2) \Delta h$ m³
density of slice = $\rho(h) = 1.5 + (h-1)^3 \frac{kg}{m^3}$
mass of slice = (volume)(density) =

Answer: Mass of slice $\approx \frac{T(2s-h^2)(1.5+(h-1)^3)\Delta h}{2}$

b. [3 points] Write, but do <u>not</u> evaluate, an expression involving one or more integrals that gives the mass (in kg) of the dirt Alicia removes in order to create the hole for her pond.

Answer: Mass =
$$\int_{h=0}^{5} \pi \left(25 - h^{2}\right) \left(1.5 + (h-1)^{3}\right) dh \ hg$$

c. [5 points] As Alicia digs, she lifts the dirt 1 meter above the ground to put it into the back of a truck. Write, but do <u>not</u> evaluate, an expression involving one or more integrals that gives the work Alicia does to remove all the dirt from the hole for her pond.

Neight of slice =
$$(mass)(acceleration due to gravity)$$

= $9.8\pi(25-h^2)(1.5+(h-1)^3)\Delta h$ N
dist to lift slice = $h+1$ m
work to lift slice = $(weight)(distance)$

$$\frac{\int^{S} 9.8\pi(h+1)(25-h^2)(1.5+(h-1)^3)dh}{(include units)}$$