9. [12 points] Kyle wants to make a big ring, made by the rotation of the region bounded by

$$y = x + \frac{1}{2}(x - 1)^4$$
,  $x = 0$ ,  $x = 1$ , and  $y = 0$ 

about the line  $x = -\frac{1}{2}$ . This region is shown below. Both x and y are measured in centimeters.



**a.** [4 points] Write, but do not evaluate, an integral expression that gives the volume of Kyle's ring in cm<sup>3</sup>.

Answer:

**b.** [4 points] The ring's density is given by  $\ln(5r+1)$  grams/cm<sup>3</sup>, where r is the distance in centimeters from the central axis of the ring. Write, but do not evaluate, an integral expressing the total mass of Kyle's ring in grams.

Answer:

**c**. [4 points] John wants to use the same region to make a ring, but instead rotates the region around the line  $y = -\frac{1}{2}$ .

Write, but do not evaluate, an integral that gives the **volume** of John's ring in cm<sup>3</sup>.

Answer: