
2. [14 points] Part of the graph of a continuous, piecewise-linear function m(x) is given below. The domain of m(x) is all real numbers.

Let:

F(x) = ∫₁^x m(t) dt
 G(x) = ∫₂^{x/2} m(t) dt
 H(x) is an antiderivative of m(x) with H(2) = 8.

You do not need to show work for this problem.

- **a**. [11 points] Find the following values. If it is not possible to do so based on the information provided, write "NI". If the value does not exist, write "DNE".
 - (i) $F(1) = __0$ (vi) $G(6) = __{1.5}$

 (ii) $F(3) = __{2.5}$ (vii) $G'(8) = __{0.75}$

 (iii) $F(-2) = __{3.5}$ (viii) $H(3) = __{9.5}$

 (iv) $F'(4) = __{1.5}$ (viii) $H(3) = __{9.5}$

 (v) $G(2) = __{-1}$ (ix) $H(10) F(10) = __{7}$
- **b.** [3 points] On which of the following intervals is H(x) concave up on the entire given interval? Circle <u>all</u> correct answers.

(0,2)	(1,3)	(2, 5)	(3,5)	NONE OF THESE
-------	-------	--------	-------	---------------