6. [7 points] Does the following integral converge or diverge? Be sure to show all work and indicate any theorems you use.

$$\int_{10}^{\infty} \frac{5x + \cos(x) - 1}{2x^3 + 2x + 7} dx$$

Answer (Circle one):

Diverges

Converges

Justification:

Solution: Since $\cos(x) \le 1$, we have $5x + \cos(x) - 1 \le 5x$. We also know $2x^3 + 2x + 7 \ge 2x^3$ for all $x \ge 0$. Therefore

$$\frac{5x + \cos(x) - 1}{2x^3 + 2x + 7} < \frac{5x}{2x^3} = \frac{5}{2x^2}$$

for $x \ge 10$.

By the *p*-test, with p = 2 > 1, we know that $\int_{10}^{\infty} \frac{5}{2x^2} dx$ converges.

Therefore, by the (Direct) Comparison Test for improper integrals, $\int_{10}^{\infty} \frac{5x + \cos(x) - 1}{2x^3 + 2x + 7} dx$ also converges.