4. [16 points] Consider the region D in the $x y$-plane bounded between $y=\ln \left(e\left(x^{2}+1\right)\right)$ and $y=\ln (5 e)$ for x values between 0 and 2 . A sketch of the region is shown below.

a. [6 points] Using the washer method, find an expression involving one or more integrals for the volume of the solid formed by rotating the region D around the x-axis. Do not evaluate your integral(s).
Solution: Taking vertical slices, we see that we obtain the washer method. The volume of a slice of thickness Δx at horizontal coordinate x is approximately

$$
\Delta V=\pi\left((\ln (5 e))^{2}-\left(\ln \left(e\left(x^{2}+1\right)\right)\right)^{2}\right) \Delta x
$$

and so the total volume of the solid is

$$
\int_{0}^{2} \pi\left((\ln (5 e))^{2}-\left(\ln \left(e\left(x^{2}+1\right)\right)\right)^{2}\right) d x .
$$

b. [6 points] Using the shell method, find an expression involving one or more integrals for the volume of the solid formed by rotating the region D around the line $x=2$. Do not evaluate your integral(s).
Solution: Taking vertical slices, we see that we obtain the shell method. Since we are rotating around $x=2$, the horizontal distance between x and the axis of rotation is $2-x$ for any $x \in[0,2]$. The volume of a slice of thickness Δx at horizontal coordinate x is approximately

$$
\Delta V=2 \pi(2-x)\left(\ln (5 e)-\ln \left(e\left(x^{2}+1\right)\right)\right) \Delta x
$$

and so the total volume of the solid is

$$
\int_{0}^{2} 2 \pi(2-x)\left(\ln (5 e)-\ln \left(e\left(x^{2}+1\right)\right)\right) d x
$$

4. (continued) Here is a reproduction of the plot on the previous page:

c. [4 points] Find an expression involving one or more integrals for the perimeter of the region D. Do not evaluate your integral(s).
Solution: The boundary of the region D has 3 sides. The left side of D has length $\ln (5 e)-1=\ln (5)$. The top side of D has length 2 . To calculate the length of the lower curve, set $f(x)=\ln \left(e\left(x^{2}+1\right)\right)$. Then

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+1} .
$$

Using the arc length formula, we get that the perimeter is

$$
\ln (5)+2+\int_{0}^{2} \sqrt{1+\left(\frac{2 x}{x^{2}+1}\right)^{2}} d x
$$

