5. [11 points] Tony's climbing gym wants to put in a climbing structure based off of the Chicago Bean. However, they want to make it more angular. The base of the structure will be in the shape of a circle with an 8 meter radius. The cross-sections perpendicular to the circle lying above a slice of the circle of length ℓ meters (as shown below) have area $\frac{1}{2} \ell^{2}$ square meters and are pictured below. The density of the material used to build the structure is not constant and has density dependent on its horizontal distance x from the vertical diameter through the circle. The density in $\mathrm{kg} / \mathrm{m}^{3}$ is given by $\delta(x)=1000 \sqrt{1+x^{2}}$.

a. [2 points] Write an expression that gives the quantity ℓ in terms of x.

Solution: Using x and ℓ as defined in the figure above, we have $x^{2}+\left(\frac{\ell}{2}\right)=8^{2}$. Solving this, since $\ell \geq 0$,

$$
\ell=2 \sqrt{64-x^{2}} .
$$

b. [3 points] Write an expression that gives the approximate volume, in cubic meters, of a slice of the structure a horizontal distance x meters away from the diameter of the circle with thickness Δx. Your expression should not involve any integrals.
Solution: The approximate volume of a slice of the structure x meters away from the vertical diameter of the circle, using (a) is

$$
\frac{1}{2} \ell^{2} \Delta x=2\left(64-x^{2}\right) \Delta x .
$$

c. [3 points] Using your expression from (b) to write an expression involving integrals which gives the total volume of the structure in cubic meters. Do not evaluate any integrals.
Solution: The volume is the integral of the volume of the slice in (b) as $\Delta x \rightarrow 0$, from $x=-8$ to $x=8$ (or alternatively twice the integral from $x=0$ to $x=8$):

$$
2 \int_{0}^{8} 2\left(64-x^{2}\right) d x=4 \int_{0}^{8} 64-x^{2} d x
$$

d. [3 points] Write an expression involving integrals which gives the total mass of the structure in kg . Your answer may contain $\delta(x)$. Do not evaluate any integrals.

Solution: Using our answer from (b) and the density of the slice a horizontal distance x meters away from the vertical diameter of the circle, the approximate mass of a slice of the structure is

$$
2 \delta(x)\left(64-x^{2}\right) \Delta x
$$

The mass is the integral of the mass of the slice as $\Delta x \rightarrow 0$ from $x=-8$ to $x=8$ (or alternatively twice the integral from $x=0$ to $x=8$ since $\delta(x)$ is even):

$$
4 \int_{0}^{8} \delta(x)\left(64-x^{2}\right) d x
$$

