4. [5 points] Find the derivative of $f(x)=3 e^{-2 x} \cos (5 x)$. You do not need to simplify your answer.
Solution: We use the chain rule and the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =3 \frac{d}{d x}\left(e^{-2 x} \cos (5 x)\right) \\
& =3\left[-2 e^{-2 x} \cos (5 x)-5 e^{-2 x} \sin (5 x)\right] \\
& =-6 e^{-2 x} \cos (5 x)-15 e^{-2 x} \sin (5 x)
\end{aligned}
$$

5. [7 points] Nzinga is going rock climbing at a local climbing gym. The gym building is shaped as follows. Its base is the triangular region shown in the figure below. The cross sections of the gym perpendicular to the y-axis are semicircles.

Write, but do not evaluate, an integral which gives the volume enclosed by the building.
Solution: The equation describing the right slanted line segment in the diagram is $y=$ $-2 x+4$, and the equation describing the left slanted line segment is $y=2 x+4$. The base of a semicircular slice which is at a height y above the x-axis is given by the difference in x-coordinate of the two slanted segments at the height y. This is $\frac{4-y}{2}-\frac{y-4}{2}=4-y$.
The radius of the semicircular slice is then $(4-y) / 2$, so the area is $\frac{1}{2} \pi((4-y) / 2)^{2}=\frac{\pi(4-y)^{2}}{8}$. So the volume of the slice, with thickness Δy, is $\frac{\pi(4-y)^{2}}{8} \Delta y$. Therefore the volume is

$$
\int_{0}^{4} \frac{\pi(4-y)^{2}}{8} d y
$$

