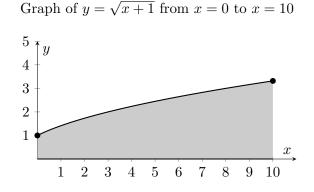
6. [10 points] Denise and Trystan are undersea research scientists, and they are preparing to descend into the ocean in a newly-constructed submarine. The submarine's shape is given by rotating the region below the curve $y = \sqrt{x+1}$, above the x-axis, and between x = 0 and x = 10 (see figure) about the x-axis. Here, x and y are measured in meters.



The density of the submarine is not constant, due to the advanced materials used in its construction. Instead, the density p(x) varies, and is given by $p(x) = (x - 5)^2 + 1 \text{ kg/m}^3$.

a. [5 points] Write an expression for the **volume** of a slice of the submarine at position x and of thickness Δx . Include units.

Solution: The radius of such a slice is given by $r(x) = \sqrt{x+1}$, so the volume is $\pi(r(x))^2 \Delta x = \pi(x+1)\Delta x$ m³.

b. [2 points] Write an expression for the **mass** of the slice you found in part (a). Include units.

Solution: The density function p(x) depends only on x, so the density is roughly constant on the slice from part (a), as long as Δx is very small. The mass of such a slice is then

$$M(x) = p(x) \cdot \pi(x+1)\Delta x = [(x-5)^2 + 1]\pi(x+1)\Delta x \text{ kg.}$$

c. [3 points] Write, but do not evaluate, an integral which gives the **total mass** of the submarine. Include units.

Solution: The approximate mass of the submarine is obtained by adding together all the masses of the slices calculated above to get $\sum [(x-5)^2 + 1]\pi(x+1)\Delta x$. In the limit we get the exact mass in the form of an integral:

$$\int_0^{10} [(x-5)^2 + 1]\pi(x+1) \, dx.$$