6. [10 points] Denise and Trystan are undersea research scientists, and they are preparing to descend into the ocean in a newly-constructed submarine. The submarine's shape is given by rotating the region below the curve $y=\sqrt{x+1}$, above the x-axis, and between $x=0$ and $x=10$ (see figure) about the x-axis. Here, x and y are measured in meters.

$$
\text { Graph of } y=\sqrt{x+1} \text { from } x=0 \text { to } x=10
$$

The density of the submarine is not constant, due to the advanced materials used in its construction. Instead, the density $p(x)$ varies, and is given by $p(x)=(x-5)^{2}+1 \mathrm{~kg} / \mathrm{m}^{3}$.
a. [5 points] Write an expression for the volume of a slice of the submarine at position x and of thickness Δx. Include units.

Solution: The radius of such a slice is given by $r(x)=\sqrt{x+1}$, so the volume is $\pi(r(x))^{2} \Delta x=\pi(x+1) \Delta x \mathrm{~m}^{3}$.
b. [2 points] Write an expression for the mass of the slice you found in part (a). Include units.
Solution: The density function $p(x)$ depends only on x, so the density is roughly constant on the slice from part (a), as long as Δx is very small. The mass of such a slice is then

$$
M(x)=p(x) \cdot \pi(x+1) \Delta x=\left[(x-5)^{2}+1\right] \pi(x+1) \Delta x \mathrm{~kg} .
$$

c. [3 points] Write, but do not evaluate, an integral which gives the total mass of the submarine. Include units.

Solution: The approximate mass of the submarine is obtained by adding together all the masses of the slices calculated above to get $\sum\left[(x-5)^{2}+1\right] \pi(x+1) \Delta x$. In the limit we get the exact mass in the form of an integral:

$$
\int_{0}^{10}\left[(x-5)^{2}+1\right] \pi(x+1) d x .
$$

