7. [13 points] A drinking water facility needs to pump water out of an underground tank. The tank is 20 meters in length with right-triangular cross-sections perpendicular to the ground as shown in the figure. The top of the tank is a 2 m by 20 m rectangle. The top of the tank lies 5 meters below the surface of the earth. Recall that $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, where g is the gravitational constant.

a. [5 points] Write an expression for the volume (in cubic meters) of a horizontal rectangular slice of water at height h above the bottom of the tank, with thickness Δh. Your answer should not involve an integral.

Solution: The length of the slice is 20 m . Call the width w. To find w in terms of h, we use similar triangles (using the diagram on the right) to set up the proportion:

$$
\frac{w}{h}=\frac{2}{5} \quad \Longrightarrow w=\frac{2}{5} h .
$$

Therefore the volume of such a slice is (we use that the volume of a rectangular prism is its length times its width times its height):

$$
20 \cdot \frac{2}{5} h \cdot \Delta h=8 h \Delta h .
$$

b. [2 points] The density of water is approximately $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Write an expression for the weight (in Newtons) of the slice of water from part (a). Your answer should not involve an integral.
Solution: The density is constant, and therefore the mass of such a slice is the volume of that slice times $1000 \mathrm{~kg} / \mathrm{m}^{3}$, which is $8000 h \Delta h$. To obtain the weight in Newtons, we multiply by $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ to get $9.8 \cdot 8000 h \Delta h$.
c. [3 points] Write an expression for the work (in Joules) needed to pump the slice of water (from parts (a) and (b)) to the surface of the earth. Your answer should not involve an integral.

Solution: (Note: the wording of this problem was slightly edited for clarity) The slice lies $5-h$ meters below the top of the tank, and the top of the tank is 5 meters below the surface of the earth, so the total distance we move the slice up is $10-h$ meters. Therefore the work (in Joules) done to move one slice up to the surface of the earth is approximately

$$
(10-h) \cdot(9.8 \cdot 8000 h \Delta h) .
$$

d. [3 points] Assuming the tank is initially full of water, write an integral for the total work (in Joules) needed to pump all of the water to the surface of the earth.
Solution: Adding up the contributions of the work needed to move each slice found in part (c) and taking a limit as the thickness Δh of each slice goes to zero, we obtain the exact answer in the form of the integral

$$
\int_{0}^{5}(10-h)(9.8 \cdot 8000 h) d h .
$$

