8. [12 points]
a. [6 points] Split the function

$$
f(x)=\frac{x+2}{(x-2)^{2}(x-1)}
$$

into partial fractions. Do not integrate your result. Please show all of your work.
Solution: Start by splitting:

$$
\frac{x+2}{(x-2)^{2}(x-1)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} .
$$

By multiplying through to get a common denominator, we get

$$
\begin{equation*}
x+2=A(x-2)^{2}+B(x-1)(x-2)+C(x-1) . \tag{1}
\end{equation*}
$$

Method 1 (Comparing coefficients): we multiply out the products on the right hand side and group terms which have the same power of x in them. This gives:

$$
\begin{equation*}
x+2=(A+B) x^{2}+(-4 A-3 B+C) x+(4 A+2 B-C) . \tag{2}
\end{equation*}
$$

This gives us the system of equations:

$$
A+B=0, \quad-4 A-3 B+C=1, \quad 4 A+2 B-C=2 .
$$

We solve this system to obtain values: $A=3, B=-3, C=4$.
Method 2 (Plugging in values): If we plug $x=2$ into (1) we get

$$
2+2=A(2-2)^{2}+B(2-1)(2-2)+C(2-1)
$$

which simplifies to $4=C$.
If we plug $x=1$ into (1) we get

$$
3=A(1-2)^{2}+B(1-1)(1-2)+C(1-1)
$$

which simplifies to $3=A$.
If we plug these values for A and C back into (1) and also plug in $x=3$ we obtain the equation

$$
\begin{aligned}
3+2 & =3(3-2)^{2}+B(3-1)(3-2)+4(3-1) \\
5 & =3+2 B+8 \\
-6 & =2 B \\
B & =-3 .
\end{aligned}
$$

So we find $A=3, B=-3, C=4$.

8. (continued)

b. [6 points] Given the partial fraction decomposition

$$
\frac{-3 x}{(x+1)\left(x^{2}+1\right)}=\frac{3}{2(x+1)}-\frac{3(x+1)}{2\left(x^{2}+1\right)},
$$

evaluate the following indefinite integral, showing all of your work:

$$
\int \frac{-3 x}{(x+1)\left(x^{2}+1\right)} d x .
$$

Solution: Start by splitting up the integral:

$$
\int \frac{-3 x}{(x+1)\left(x^{2}+1\right)} d x=\int \frac{3}{2(x+1)} d x-\int \frac{3(x+1)}{2\left(x^{2}+1\right)} d x .
$$

Then we split up the second integral to get

$$
\int \frac{-3 x}{(x+1)\left(x^{2}+1\right)} d x=\int \frac{3}{2(x+1)} d x-\int \frac{3 x}{2\left(x^{2}+1\right)} d x-\int \frac{3}{2\left(x^{2}+1\right)} d x .
$$

For the first integral, we have:

$$
\int \frac{3}{2(x+1)} d x=\frac{3}{2} \int \frac{1}{x+1} d x=\frac{3}{2} \ln |x+1|+C .
$$

For the second integral, we u-substitution with $u=x^{2}+1$, and $d u=2 x d x$, so:

$$
\int \frac{3 x}{2\left(x^{2}+1\right)} d x=\frac{3}{2} \int \frac{x}{x^{2}+1} d x=\frac{3}{4} \int \frac{1}{u} d u=\frac{3}{4} \ln \left|x^{2}+1\right|+C .
$$

For the final integral, we have:

$$
\int \frac{3}{2\left(x^{2}+1\right)} d x=\frac{3}{2} \int \frac{1}{x^{2}+1} d x=\frac{3}{2} \arctan (x)+C .
$$

Putting this all together, we get

$$
\int \frac{-3 x}{(x+1)\left(x^{2}+1\right)} d x=\frac{3}{2} \ln |x+1|-\frac{3}{4} \ln \left|x^{2}+1\right|-\frac{3}{2} \arctan (x)+C .
$$

