9. [10 points]
a. [6 points] As a particle moves in the $x y$ plane, it traces out the curve $y=g(x)$ for $1 \leq x \leq 5$, where $g(x)$ is the function

$$
g(x)=\int_{2 x}^{x^{4}} \sin \left(t^{3}\right) d t+100 e^{\pi} .
$$

Set up, but do not evaluate, an expression with a single integral which gives the arclength of the path of the particle. Your answer should not involve the letter g.

Solution: The arclength formula says that the length of the path of the particle is given by

$$
\int_{1}^{5} \sqrt{1+\left(g^{\prime}(x)\right)^{2}} d x .
$$

The FTC gives

$$
g^{\prime}(x)=4 x^{3} \sin \left(x^{12}\right)-2 \sin \left(8 x^{3}\right) .
$$

Therefore, the answer is

$$
\int_{1}^{5} \sqrt{1+\left[4 x^{3} \sin \left(x^{12}\right)-2 \sin \left(8 x^{3}\right)\right]^{2}} d x
$$

b. [4 points] A different particle is traveling with velocity given by $v(t)$ meters/second, where $v(t)$ is the function in the following graph: The units of t are seconds.

Using a left Riemann sum with four subdivisions, estimate the distance the particle travels in the first 8 seconds of its journey. Is this an underestimate or an overestimate of the actual distance traveled in the first 8 seconds? Justify your answer.

Solution: Since the length of each subdivision is 2, we obtain:

$$
\begin{aligned}
\operatorname{LEFT}(4) & =2 \cdot 5+2 \cdot 4+2 \cdot 4+2 \cdot 2 \\
& =2(5+4+4+2) \\
& =30 .
\end{aligned}
$$

This is an overestimate of the actual distance. This is because the function $v(t)$ is decreasing on $[0,2]$ and $[4,8]$ and constant on $[2,4]$. Left Riemann sums overestimate the actual area for decreasing functions.

