3. [9 points] Anna and Burt have come to an agreement after Labor Day's food debacle. They've decided to cook lasagna for their family's next get-together. They practice cooking the lasagna over the course of 4 hours. Let $L(t)$ be the tastiness of the lasagna, measured in tasty units, t hours after they begin cooking. $L(t)$ is given by

$$
L(t)=\int_{1}^{t^{2}-3 t+3} \frac{7}{1+x^{4}} \mathrm{~d} x+3, \text { for } 0 \leq t \leq 4 .
$$

a. [2 points] There are exactly two times within the interval [0,4] where the lasagna is 3 tasty units. What are those times? Show your work.
Solution: $L(t)=3$ when the upper bound and lower bound are equal. Solving the equation $t^{2}-3 t+3=1$ yields $t=1,2$.

Answer: $\quad t=1,2$
b. [4 points] During what interval(s) in $[0,4]$ is the lasagna's tastiness decreasing? Justify your answer(s) using calculus.
Solution: Solving $L^{\prime}(t)=\frac{7}{1+\left(t^{2}-3 t+3\right)^{4}}(2 t-3)=0$ gives the unique critical point $t=3 / 2$. If $t<3 / 2$, then $L^{\prime}(t)<0$ (the opposite is true if $t>3 / 2$). Therefore, tastiness is decreasing on the interval $[0,3 / 2)$.

$$
\begin{aligned}
& \text { Answer: } \frac{[0,3 / 2)}{\text { c. }[3 \text { points }] \text { Find a function } f(x) \text { and constants } a \text { and } C \text { so that we may rewrite } L(t) \text { in the }} \\
& \text { form } \\
& L(t)=\int_{a}^{t} f(x) \mathrm{d} x+C .
\end{aligned}
$$

There may be more than one correct answer.

$$
f(x)=\frac{7(2 x-3)}{\underline{1+\left(x^{2}-3 x+3\right)^{4}}} \quad a=\underline{1} \quad C=\underline{3}
$$

