4. [9 points] As Megan's assortment of mushrooms continues to grow, she starts tracking the growth of various mushrooms. She finds that one mushroom has an erratic growth rate. Its growth rate t days after it blooms is given by the function

$$
m(t)=\frac{10 \cos (t)}{\left(\sin ^{2}(t)+1\right)(\sin (t)+2)}+6 \text { for } 0 \leq t \leq 5
$$

measured in centimeters per day.
The height of Megan's mushroom 5 days after it blooms is given by the integral

$$
\int_{0}^{5} m(t) \mathrm{d} t .
$$

Evaluate this integral, showing all your work. Give an exact answer and include units. You may use the fact that

$$
\frac{1}{\left(u^{2}+1\right)(u+2)}=\frac{2-u}{5\left(u^{2}+1\right)}+\frac{1}{5(u+2)} .
$$

Solution: Via substitution method, with $u=\sin (t)$,

$$
\int_{0}^{5} \frac{10 \cos (t)}{\left(\sin ^{2}(t)+1\right)(\sin (t)+2)} \mathrm{d} t=\int_{0}^{\sin (5)} \frac{10}{\left(u^{2}+1\right)(u+2)} \mathrm{d} u .
$$

Using the fact given in the problem, we have

$$
\int_{0}^{5} m(t) \mathrm{d} t=4 \int_{0}^{\sin (5)} \frac{1}{u^{2}+1} \mathrm{~d} u-2 \int_{0}^{\sin (5)} \frac{u}{u^{2}+1} \mathrm{~d} u+2 \int_{0}^{\sin (5)} \frac{1}{u+2} \mathrm{~d} u+30
$$

Using $v=u^{2}+1$, we have

$$
\int_{0}^{\sin (5)} \frac{u}{u^{2}+1} \mathrm{~d} u=\frac{1}{2} \int_{1}^{\sin ^{2}(5)+1} \frac{1}{v} \mathrm{~d} v
$$

Therefore,

$$
\int_{0}^{5} m(t) \mathrm{d} t=4 \arctan (\sin (5))-\ln \left(\sin ^{2}(5)+1\right)+2(\ln (\sin (5)+2)-\ln (2))+30
$$

The units are centimeters.
Answer: $\quad \underline{4} \arctan (\sin (5))-\ln \left(\sin ^{2}(5)+1\right)+2 \ln (\sin (5)+2)-2 \ln (2)+30$

