6. [15 points] The curves \(x = y^2 - 4y + 5 \) and \(x = 5 + 2y - y^2 \) intersect at the points \((2, 3)\) and \((5, 0)\), as seen in the diagram below. Consider the region, \(R \), bounded by the two curves.

![Diagram of the curves and region R](image)

a. [5 points] Find an expression involving one or more integrals for the volume of the solid formed by rotating the region \(R \) around the line \(x = 0 \) (i.e. the \(y \)-axis). Do not evaluate your integral(s).

Solution: We use horizontal slices, which gives rise to washers. For this region, \(y \) ranges between 0 and 3, so we get

\[
\int_0^3 \pi \left((5 + 2y - y^2)^2 - (y^2 - 4y + 5)^2 \right) \, dy = \int_0^3 4\pi y(y - 5)(y - 3) \, dy
\]

Answer:

b. [5 points] Find an expression involving one or more integrals for the volume of the solid formed by rotating the region \(R \) around the line \(y = 4 \). Do not evaluate your integral(s).

Solution: We use horizontal slices, which gives rise to cylindrical shells. For this region, \(y \) ranges between 0 and 3, so we get

\[
\int_0^3 2\pi (4 - y) \left((5 + 2y - y^2) - (y^2 - 4y + 5) \right) \, dy = \int_0^3 2\pi (4 - y) \left(6y - 2y^2 \right) \, dy
\]

\[
= \int_0^3 4\pi y (4 - y) (3 - y) \, dy
\]

Answer:

c. [5 points] Find an expression involving one or more integrals for the volume of the solid which has the region \(R \) as its base, and which has square cross-sections perpendicular to the \(y \)-axis. Do not evaluate your integral(s).
Solution: We use horizontal slices. If a cross-sectional slice has width \(s \), then its area is \(s^2 \). For this region, \(y \) ranges between 0 and 3, so we get

\[
\int_0^3 \left((5 + 2y - y^2) - (y^2 - 4y + 5) \right)^2 \, dy = \int_0^3 4y^2 (y - 3)^2 \, dy
\]

Answer: ________________________________