6. [15 points] The curves $x=y^{2}-4 y+5$ and $x=5+2 y-y^{2}$ intersect at the points $(2,3)$ and $(5,0)$, as seen in the diagram below. Consider the region, R, bounded by the two curves.

a. [5 points] Find an expression involving one or more integrals for the volume of the solid formed by rotating the region R around the line $x=0$ (i.e. the y-axis). Do not evaluate your integral(s).
Solution: We use horizontal slices, which gives rise to washers. For this region, y ranges between 0 and 3 , so we get

$$
\int_{0}^{3} \pi\left(\left(5+2 y-y^{2}\right)^{2}-\left(y^{2}-4 y+5\right)^{2}\right) d y=\int_{0}^{3} 4 \pi y(y-5)(y-3) d y
$$

Answer:

b. [5 points] Find an expression involving one or more integrals for the volume of the solid formed by rotating the region R around the line $y=4$. Do not evaluate your integral(s).
Solution: We use horizontal slices, which gives rise to cylindrical shells. For this region, y ranges between 0 and 3, so we get

$$
\begin{aligned}
\int_{0}^{3} 2 \pi(4-y)\left(\left(5+2 y-y^{2}\right)-\left(y^{2}-4 y+5\right)\right) d y & =\int_{0}^{3} 2 \pi(4-y)\left(6 y-2 y^{2}\right) d y \\
& =\int_{0}^{3} 4 \pi y(4-y)(3-y) d y
\end{aligned}
$$

Answer:

c. [5 points] Find an expression involving one or more integrals for the volume of the solid which has the region R as its base, and which has square cross-sections perpendicular to the y-axis. Do not evaluate your integral(s).

Solution: We use horizontal slices. If a cross-sectional slice has width s, then its area is s^{2}. For this region, y ranges between 0 and 3 , so we get

$$
\int_{0}^{3}\left(\left(5+2 y-y^{2}\right)-\left(y^{2}-4 y+5\right)\right)^{2} d y=\int_{0}^{3} 4 y^{2}(y-3)^{2} d y
$$

Answer:

