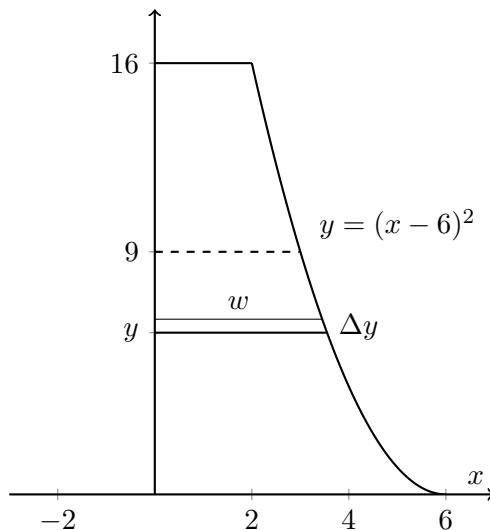


9. [12 points]

A big tank at a chemical factory is formed by rotating the region in the first quadrant bounded by $y = 16$, and


$$y = (x - 6)^2,$$

around the y -axis. All distances are measured in meters. The tank is filled with liquid chemicals up to $y = 9$ meters, as shown by the dashed line in the plot to the right. Due to sedimentation, the liquid has a varying density of

$$f(y) = 3 - 0.1y \text{ kg/m}^3$$

at height y . Workers at the factory will pump the chemicals out through the top of the tank. You may assume that the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$.

a. [2 points] Consider the thin horizontal strip of the region depicted above, which is located y meters above the x -axis. It has horizontal length w and a small thickness Δy . Find a formula for w in terms of y .

Answer: $w =$ _____

b. [4 points] When the strip above is rotated around the y -axis, it forms a thin **disk**. Write an expression which approximates the **mass** of that disk. Your answer should not involve any integrals, and you should express your answer in terms of y , and Δy . **Include units.**

Answer: _____ **Units:** _____

c. [3 points] Write an expression which approximates the work needed to lift the thin disk described in part **b** to the top of the tank. Your answer should not involve any integrals, and you should express your answer in terms of y , and Δy . **Include units.**

Answer: _____ **Units:** _____

d. [3 points] Write an expression involving one or more integrals representing the work needed to pump all the liquid chemicals to top of the tank, using the same units as in part **c**. **Do not** evaluate any integrals in your expression.

Answer: _____