4. (6 pts) Write an integration problem (of your choice) for which the substitution $w=1 / x$ would be the best way to start. You need not evaluate your own integral.
Many choices here. A good one will have $1 / x$ inside some other function, and its derivative (up to a constant) outside. So

$$
\int \frac{\sin (1 / x)}{x^{2}} d x \text { and } \int 3 x^{-2} \ln \left(x^{-1}\right) d x
$$

are good choices.
5. (10 pts) Does

$$
\int_{0}^{8} \frac{5+\sin (x)}{x(8+\cos (x))} d x
$$

converge or diverge? Demonstrate unequivocally that your answer is correct.
We'll use the comparison test to show that the integral diverges. Since $\sin x$ is between -1 and 1 , $5+\sin x$ is between 4 and 6 . Likewise since $\cos x$ is between -1 and $1,8+\cos x$ is between 7 and 9 . It follows that

$$
\frac{4}{9} \leq \frac{5+\sin (x)}{8+\cos (x)} \leq \frac{6}{7}
$$

for all values of x. Therefore

$$
\int_{0}^{8} \frac{5+\sin (x)}{x(8+\cos (x))} d x \geq \int_{0}^{8} \frac{4}{9} \cdot \frac{1}{x} d x=\lim _{a \rightarrow 0^{+}} \frac{4}{9} \int_{a}^{8} \frac{1}{x} d x=\left.\lim _{a \rightarrow 0^{+}} \frac{4}{9} \ln x\right|_{a} ^{8}=\frac{4}{9} \lim _{a \rightarrow 0^{+}} \ln (8)-\ln (a)
$$

Since $-\ln (a)$ approaches ∞ as a approaches 0 , the final expression diverges. So the original integral diverges by the comparison test.

