7. (10 pts) Using integration by parts, calculate

$$
\int e^{-x} \cos (x) d x
$$

Let I be the integral in question. Then use integration by parts, with

$$
\begin{array}{ll}
u=e^{-x} & v=\sin (x) \\
u^{\prime}=-e^{-x} & v^{\prime}=\cos (x)
\end{array}
$$

to get

$$
\begin{aligned}
I & =\int u v^{\prime} d x=u v-\int u^{\prime} v d x=e^{-x} \sin (x)-\int-e^{-x} \sin (x) d x \\
& =e^{-x} \sin (x)+\int e^{-x} \sin (x) d x
\end{aligned}
$$

Now do it again, with

$$
\begin{array}{ll}
u=e^{-x} & v=-\cos (x) \\
u^{\prime}=-e^{-x} & v^{\prime}=\sin (x)
\end{array}
$$

and get

$$
\begin{aligned}
I & =e^{-x} \sin (x)+\int u v^{\prime} d x=e^{-x} \sin (x)+u v-\int u^{\prime} v d x \\
& =e^{-x} \sin (x)+e^{-x}(-\cos (x))-\int-e^{-x}(-\cos (x)) d x \\
& =e^{-x}(\sin (x)-\cos (x))-I
\end{aligned}
$$

We got back where we started from, but with a minus sign, so we're OK. Now move the new I over to the other side and divide by 2 to get

$$
I=\frac{e^{-x}(\sin (x)-\cos (x))}{2}+C
$$

Check by taking the derivative:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{e^{-x}(\sin (x)-\cos (x))}{2}\right) & =\frac{1}{2}\left(e^{-x}(\cos (x)-(-\sin (x)))+\left(-e^{-x}\right)(\sin (x)-\cos (x))\right) \\
& =\frac{1}{2} e^{-x}(\cos (x)+\sin (x)-\sin (x)+\cos (x)) \\
& =e^{-x} \cos (x)
\end{aligned}
$$

as expected.

