8. (10 pts) Calculate the exact value of this definite integral. You will be graded on the correctness of your work, so show it carefully.

$$
\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} d x
$$

Let $w=1+e^{x}$. Then $d w=e^{x} d x$, so we have

$$
\begin{aligned}
\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} d x & =\int_{x=-\infty}^{x=0} \frac{d w}{w}=\left.\ln w\right|_{x=-\infty} ^{x=0}=\left.\ln \left(1+e^{x}\right)\right|_{-\infty} ^{0} \\
& =\left.\lim _{a \rightarrow-\infty} \ln \left(1+e^{x}\right)\right|_{a} ^{0}=\lim _{a \rightarrow-\infty} \ln \left(1+e^{0}\right)-\ln \left(1+e^{a}\right)
\end{aligned}
$$

Since e^{a} approaches 0 as a approaches $-\infty$, that's

$$
\ln (1+1)-\ln (1+0)=\ln 2
$$

