2. (30 points) The graphs of $f(t), h(t)$, and $k(t)$ are shown below. You may assume that as $t \rightarrow \infty$, the graphs of $f, h$, and $k$ continue in a fashion similar to the trend observed in the graph on the right. We define $g(x)=\int_{1}^{x^{2}} f(t) d t$.
a. What's $g^{\prime}(2)$ ?

b. What, if anything, could you say about $\lim _{x \rightarrow \infty} g(x)=\int_{1}^{\infty} f(t) d t$ if you knew that $h(t)<\frac{1}{t \sqrt{t}}$ for $t \geq 6$ ? Explain your answer.
c. What, if anything, could you say about $\lim _{x \rightarrow \infty} g(x)=\int_{1}^{\infty} f(t) d t$ if you were to instead assume that $\int_{100}^{\infty} k(t) d t=16$ ? Explain your answer.
